Hexanitrohexaazaisowurtzitane (HNIW, CL-20)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu


Hexanitrohexaazaisowurtzitane, a nitroamine compound, has emerged as an important insensitive energetic material. This caged compound offers several interesting properties. This chapter discusses the properties and more importantly the formulations using CL-20.


Hexanitrohexaazaisowurtzitane (HNIW) Plastic-bonded Explosives (PBXs) Sinditskii Triethylene Glycol Dinitrate Accelerating Rate Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nielsen AT (1997) Caged polynitramine compound. US Patent 5693794Google Scholar
  2. 2.
    USA Navy Manteca (2004) Report of 2003. Dept of Navy, Fiscal Year 2003 RptGoogle Scholar
  3. 3.
    Nielsen AT, Nissan RA, Vanderah DJ, Coon CL, Gilardi RD, George CF, Lippen-Anderson JF (1990) Polyazapolycyclics by condensation of aldehydes with amines 2 Formation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazatetra – cyclo [55000] dodecanes from glyoxal and benzylamines. J Org Chem 55(5):1459–1466CrossRefGoogle Scholar
  4. 4.
    Crampton MR, Hamid J, Millar R, Ferguson G (1993) Studies of the synthesis, protonation and decomposition of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[55005,903,11]dodecane (HBIW). J Chem Soc Perkin Trans 2(5):923–929CrossRefGoogle Scholar
  5. 5.
    Edwards WW, Wardle RB (1998) Process for making 2,4,6, 8,10,12- hexanitro- 2,4,6,8,10, 12- hexa azatetracyclo 550 0 5,9 0 3,11] –dodecane. EP 1153025 A2 (WO2000052011A2), US Patent 5739325Google Scholar
  6. 6.
    Kodama T (1994) Preparation of hexakis (trimethylsilylethylcarbamyl) hexaazaisowurtzitane. JP06321962AGoogle Scholar
  7. 7.
    Kodama T, Tojo M, Ikeda M (1996) Acylated hexaazaisowurtzitane derivatives and process for producing the same. WO9623792A1Google Scholar
  8. 8.
    Ou Y-x, Xu Y-j, Liu L-h, Zheng F-p, Wang C, Chen J-t (1999) Comparison of acetonitrile process with ethanol process for synthesis of hexabenzylhexaazaisowurtzitane. Hanneng Cailiao 7(4):152–155Google Scholar
  9. 9.
    Ou Y, Xu Y, Chen B, Liu L, Wang C (1999) Synthesis of hexanitrohexaazaisowurtzitane from tetraacetyldiformylhexaazaisowurtzitane. Proc Int Pyrotech Semin 26th:406–411Google Scholar
  10. 10.
    Ou Y, Meng Z, Liu J (2007) Advance in high energy density compound CL-20-developments of synthesis route and production technologies of CL-20. Huagong Jinzhan 26(6):762–768Google Scholar
  11. 11.
    Sysolyatin SV, Lobanova AA, Chernikova YT, Sakovich GV (2005) Methods of synthesis and properties of hexanitrohexaazaisowurtzitane. Russ Chem Rev 74(8):757–764. doi: 10.1070/RC2005v074n08ABEH001179 CrossRefGoogle Scholar
  12. 12.
    Wang C, Ou Y-X, Chen B-R (2000) One pot synthesis of hexabenzylhexaazaiso-wurtzitane. Beijing LigongDaxueXuebao 20(4):521–523Google Scholar
  13. 13.
    Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54(39):11793–11812. doi: 10.1016/S0040-4020(98)83040-8 CrossRefGoogle Scholar
  14. 14.
    Larson SL, Felt DR, Davis JL, Escalon L (2002) Analysis of CL-20 in environmental matrices: water and soil. J Chromatogr Sci 40(4):201–206. doi: 10.1093/chromsci/404201 CrossRefGoogle Scholar
  15. 15.
    Hamilton RS, Sanderson AJ, Wardle RB, Warner KF (2000) Studies of the crystallization of CL-20. International Annual Conference of ICT [Institut ChemischeTechnologie], 31st (Energetic Materials), 21/1–21/8Google Scholar
  16. 16.
    Bellamy AJ (1995) Reductive debenzylation of hexabenzylhexaazaisowurtzitane. Tetrahedron 51(16):4711–4722CrossRefGoogle Scholar
  17. 17.
    Surapaneni R, Damavarapu R, Kumar RA, Dave PR (2000) Process improvements in CL-20 manufacture. International Annual Conference of ICT, 31st (Energetic Materials), 108/1–108/4Google Scholar
  18. 18.
    Qian H, Ye Z-W, Lv C-X (2007) Efficient and facile synthesis of hexanitrohexaazaisowurtzitane (HNIW) for high energetic materials. Lett Org Chem 4(7):482–485CrossRefGoogle Scholar
  19. 19.
    Qian H, Chunxu LV, Zhiwen YE (2008) Synthesis of CL-20 by clean nitrating agent dinitrogen pentoxide. J Indian Chem Soc 85(4):434–439Google Scholar
  20. 20.
    Qian H, Ye Z-W, Lu C-X (2008) Synthesis of CL-20 via nitration and nitrolysis of 2,6,8,12-tetraacety l-2,4,6,8,10,12-hexaazaisowurtzitane with N2O5/HNO3. Yingyong Huaxue 25(3):378–380Google Scholar
  21. 21.
    Song ZW, Yan QL, Li XJ, Qi XF, Lim M (2010) Crystal transition of CL-20 in different solvents. Chin J Energ Mater 6:648–653Google Scholar
  22. 22.
    Gore GM, Sivabalan R, Nair UR, Saikia A, Venugopalan S, Gandhe BR (2007) Synthesis of CL-20: By oxidative debenzylation with cerium (IV) ammonium nitrate (CAN). Indian J Chem, Sect B: Org Chem Incl Med Chem 46B(3):505–508Google Scholar
  23. 23.
    Kawabe S, Miya H, Kodama T, Miyake N (2007) Process for the preparation of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane. US 6297372 B1, EP 0547735Google Scholar
  24. 24.
    Cagnon G, Eck G, Herve G, Jacob G (2007) Method for making new polycyclic polyamides as precursors for energetic polycyclic polynitramine oxidizers. US Patent 7279572Google Scholar
  25. 25.
    Latypov NV, Wellmar U, Goede P, Bellamy AJ (2000) Synthesis and Scale-Up of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12- hexaazaisowurtzitane (HNIW, CL-20). Org Proc Res Dev 4(3):156–158CrossRefGoogle Scholar
  26. 26.
    Pang S-P, Yu Y-Z, X-Q Zhao () A novel synthetic route to hexanitrohexa- azaisowurtzitane. Propellants, Explosives, Pyrotechnics 30(6):442–444Google Scholar
  27. 27.
    Chapman RD, Hollins RA (2008) Benzylamine-Free, heavy-metal-free synthesis of CL-20 via hexa(1-propenyl)hexaazaisowurtzitane. J Energ Mater 26(4):246–273CrossRefGoogle Scholar
  28. 28.
    Herve G, Jacob G, Gallo R (2006) Preparation and structure of novel hexaazaisowurtzitane cages. Chem Eur J 12(12):3339–3344CrossRefGoogle Scholar
  29. 29.
    Mandal AK, Pant CS, Kasar SM, Soman T (2009) Process Optimization for Synthesis of CL-20. J Energ Mater 27(4):231–246. doi: 10.1080/07370650902732956 CrossRefGoogle Scholar
  30. 30.
    Lu L, Xu B, Ma Z, Yue H, Mu W, Ou Y (2007) New method for synthesis and crystallizing of HNIW in nitric acid. In: Huang P, Wang Y, Li S (eds) 2007 Science Press, Proc Intl Autumn Seminar on Propellants, Explosives and Pyrotechnics, 7th, Xi’an, China, Oct 23–26, pp 64–65Google Scholar
  31. 31.
    Wang J, Li J, An C, Hou C, Xu W, Li X (2012) Study on ultrasound- and spray-assisted precipitation of CL-20. Propellants, Explos, Pyrotech 37(6):670–675CrossRefGoogle Scholar
  32. 32.
    van der Heijden AEDM, Bouma RHB (2004) Crystallization and characterization of RDX, HMX, and CL-20. Cryst Growth Des 4(5):999–1007CrossRefGoogle Scholar
  33. 33.
    Bellamy AJ (2003) A simple method for the purification of crude hexanitrohexaazaisowurtzitane (HNIW or CL20). Propellants, Explos, Pyrotech 28(3):145–152CrossRefGoogle Scholar
  34. 34.
    Degirmenbasi N, Peralta-Inga Z, Olgun U, Gocmez H, Kalyon DM (2006) Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: part II, experimental studies. J Energ Mater 24(2):103–139. doi: 10.1080/07370650600672090 CrossRefGoogle Scholar
  35. 35.
    Agrawal JP (2011) High Energy Materials. Wiley, Weinheim, GermanyGoogle Scholar
  36. 36.
    Nair UR, Sivabalan R, Gore GM, Geetha M, Asthana SN, Singh H (2005) Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (Review). Combust Explosion Shock Waves 41:121–132CrossRefGoogle Scholar
  37. 37.
    Chapman RD, Hollins RA, Groshens TJ, Nissan DA (2006) Benzylamine-Free, heavy-metal-free synthesis of CL-20. SERDP seed Prohect WP-1518Google Scholar
  38. 38.
    Jin S, Shu Q, Chen S, Shi Y (2007) Preparation of e-HNIW by a one-pot method in concentrated nitric acid from tetraacetyldiformylhexaazaisowurtzitane. Propellants, Explos, Pyrotech 32(6):468–471CrossRefGoogle Scholar
  39. 39.
    Duddu R, Dave PR (1999) Processes and Compositions for Nitration of N-Substituted Isowurtzitane Compounds. Paten WO9957104, USAGoogle Scholar
  40. 40.
    Wardle RB, Hinshaw JC (2000) Synthesis and reactions of hexaazaisowurtzitane-type compounds in synthesis of hexanitrohexaazaisowurtzitane (HNIW) explosive. In: Cordant Technologies Inc, USA, Division of US Ser No 292 028, pp 8Google Scholar
  41. 41.
    Russell TP, Miller PJ, Piermarini GJ, Block S (1992) High-pressure phase transition in γ-hexanitrohexaazaisowurtzitane. J Phys Chem 96(13):5509–5512CrossRefGoogle Scholar
  42. 42.
    Ciezak JA, Jenkins TA, Liu Z (2007) Evidence for a high-pressure phase transition of ε-2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) using vibrational spectroscopy. Propellants, Explos, Pyrotech 32(6):472–477. doi: 10.1002/prep200700209 CrossRefGoogle Scholar
  43. 43.
    Gump JC, Peiris SM (2008) Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20). J Appl Phys 104(8):083509/1–083509/5. doi: 10.1063/1.2990066
  44. 44.
    Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG (2005) Thermal study of HNIW (CL-20). Thermochim Acta 433:105–115CrossRefGoogle Scholar
  45. 45.
    Ghosh M, Venkatesan V, Sikder AK, Sikder N (2012) Preparation and characterisation of ε-CL-20 by solvent evaporation and precipitation methods. Def Sci J 62(6):390–398CrossRefGoogle Scholar
  46. 46.
    Meents A, Dittrich B, Johnas SKJ, Thome V, Weckert EF (2008) Charge-density studies of energetic materials: CL-20 and FOX-7. Acta Crystallogr B 64(Pt 1):9–42Google Scholar
  47. 47.
    Chen H, Chen S, Li L, Jin S (2008) Quantitative determination of e-phase in polymorphic HNIW using diffraction patterns. Propellants, Explos, Pyrotech 33:467–471CrossRefGoogle Scholar
  48. 48.
    Cabalo JB, Sausa RC (2005) Explosive residue detection by laser surface photo-fragmentation–fragment detection spectroscopy: II In Situ and Real-time Monitoring of RDX, HMX, CL20, and TNT, by an Improved ion probe. Report ARL-TR-3478Google Scholar
  49. 49.
    Larson SL, felt DR, Escalon L, JD Davis, Hansen LD (2001) Analysis of CL-20 in environmental matrices water and soil. ERDC/EL TR-01-21Google Scholar
  50. 50.
    Liu Y, Chen S, Luo S (2000) HPLC method for analysis of CL-20 in explosive mixture. Huaxue Yanjiu Yu Yingyong 12(4):446–448Google Scholar
  51. 51.
    Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan VK, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications Comparison with RDX and HMX. J Chromatogr A 1025(1):125–132. doi: 10.1016/jchroma200308060 CrossRefGoogle Scholar
  52. 52.
    Anthony JS, Davis EA, Haley MV, Kolakowski JE, Kurnas CW, Phillips CT, Simini M, Kuperman RG, Checkai RT (2004) HPLC determination of hexanitrohexaazaisowurtzitane (CL 20) in soil and aqueous matrices. US Army Res Dev Eng Command Edgewood chem Bio Center, ECBE-TR, p 403Google Scholar
  53. 53.
    Makarov A, LoBrutto R, Christodoulatos C, Jerkovich A (2009) The use of ultra high-performance liquid chromatography for studying hydrolysis kinetics of CL-20 and related energetic compounds. J Hazard Mater 162(2–3):1034–1040. doi: 10.1016/jjhazmat200805157 CrossRefGoogle Scholar
  54. 54.
    Oehrle SA (1994) Analysis of CL-20 and TNAZ in the presence of other nitroaromatic and nitramine explosives using HPLC with photodiode array (PDA) detection. J Energ Mater 12(4):22–211. doi: 10.1080/07370659408018651 Google Scholar
  55. 55.
    Persson B, Ostmark H, Bergman H (1997) An HPLC method for analysis of HNIW and TNAZ in an explosive mixture. Propellants, Explos, Pyrotech 22(4):238–239CrossRefGoogle Scholar
  56. 56.
    Agilent Technology, LC/MS Application Note, April 2004Google Scholar
  57. 57.
    Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Prediction of physicochemical properties of energetic materials. Fluid Phase Equilib 264:86–92CrossRefGoogle Scholar
  58. 58.
    Qasim MM, Furey J, Fredrickson HL, Szecsody J, McGrath C, Bajpai R (2004) Semiempirical predictions of chemical degradation reaction mechanisms of CL-20 as related to molecular structure. Struct Chem 15(5):493–499. doi: 10.1023/B:STUC000003790727898f5 CrossRefGoogle Scholar
  59. 59.
    Zeman S, Jalovy Z (2000) Heats of fusion of polynitro derivatives of polyazaisowurtzitane. Thermochim Acta 345(1):31–38CrossRefGoogle Scholar
  60. 60.
    Jenkins TF, Bartolini C, Ranney TA (2003) Stability of CL-20,TNAZ, HMX, RDX,NG, and PETN in moist, unsaturated soil. ERDC/CRREL TR-03-7Google Scholar
  61. 61.
    Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffmann DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants, Explos, Pyrotech 22(5):249–255CrossRefGoogle Scholar
  62. 62.
    Greenlief CM, Ghosh TK, Viswanath DS, Boddu VM (2010) Vapor Pressure of Hexanitrohexaazaisowurtzitane (HNIW, CL-20). Report to Leonard Wood Institute, LWI-101.1, MO, USAGoogle Scholar
  63. 63.
    Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV, Milekhin YM, Gusev SA, Matveev AA (2003) Combustion characteristics of the high-energy cage hexanitrohexaazaisowurtzitane nitramine. Khim Fiz 22(7):69–74Google Scholar
  64. 64.
    Boddu VM, Maloney SW, Toghiani RK, Toghiani H (2010) Prediction of physicochemical properties of energetic materials for identification of treatment technologies for waste streams. U.S. Army Engineer Research and Development Center, ERDC/CERL TR-10-27Google Scholar
  65. 65.
    Osmont A, Catoire L, Gökalp I, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151:262–273CrossRefGoogle Scholar
  66. 66.
    Karakaya P, Sidhoum M, Christodoulatos C, Nicolich S, Balas W (2005) Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20). J Hazard Mater 120(1–3):183–191CrossRefGoogle Scholar
  67. 67.
    von Holtz E, Ornellas D, Foltz MF, Clarkson JE (1994) The solubility of ε-CL-20 in selected materials. Propellants, Explos, Pyrotech 19:206–212CrossRefGoogle Scholar
  68. 68.
    Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG (2005) Thermal study of HNIW (CL-20). Thermochim Acta 433(1–2):105–115CrossRefGoogle Scholar
  69. 69.
    Highsmith T, Johnston H (2004) Continuous process for preparing alkoxynitroarenes. ALLIANT TECHSYSTEMS INC., MINNESOTA, US 10/338,767, USAGoogle Scholar
  70. 70.
    Korsounskii BL, Nedel’ko VV, Chuk anov NV, Larikova TS, Volk F (2000) Kinetics of thermal decomposition of hexanitrohexaazaisowurzitane, Russ Chem Bull 49:812–817Google Scholar
  71. 71.
    Ding T, Yang H, Zhang Y (2013) Thermal decomposition of CL-20/RDX mixed system. Huaxue Tuijinji Yu Gaofenzi Cailiao 11(6):84–86Google Scholar
  72. 72.
    Bohn MA (2002) Kinetic description of mass loss data for the assessment of stability, compatibility and aging of energetic components and formulations exemplified with ε-CL20. Propellants, Explos, Pyrotech 27(3):125–135CrossRefGoogle Scholar
  73. 73.
    Qasim MM, Moore B, Taylor L, Honea P, Gorb L, Leszczynski J (2007) Structural characteristics and reactivity relationships of nitroaromatic and nitramine explosives—a review of our computational chemistry and spectroscopic research. Int J Mol Sci 8:1234–1264CrossRefGoogle Scholar
  74. 74.
    Pavlov J, Christodoulatos C, Sidhoum M, Nicolich S, Balas W, Koutsospyros A (2007) Hydrolysis of hexanitrohexaazaisowurtzitane (CL-20). J Energ Mater 25(1):1–18Google Scholar
  75. 75.
    Santiago L, Felt DR, Davis JL (2007) Chemical remediation of an ordnance-related compound: thealkaline hydrolysis of CL-20. ERDC/El TR-07-18 ReportGoogle Scholar
  76. 76.
    Naik NH, Gore GM, Gandhe BR, Sikder AK (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). J Hazard Mater 159(2–3):5–630Google Scholar
  77. 77.
    Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive CL-20. Appl Environ Microbiol 69(3):1871–1874CrossRefGoogle Scholar
  78. 78.
    Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73(2):274–290; Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi Chemosphere 63(1):175–181Google Scholar
  79. 79.
    Balakrishnan VK, Monteil-Rivera F, Gautier MA, Hawari J (2004) Sorption and stability of the polycyclic nitramine explosive CL-20 in soil. J Environ Qual 33(4):1362–1368CrossRefGoogle Scholar
  80. 80.
    Balakrishnan VK, Monteil-Rivera F, Halasz A, Corbeanu A, Hawari J (2004) Decomposition of the Polycyclic Nitramine Explosive, CL-20, by Fe0. Environ Sci Technol 38(24):6861–6866CrossRefGoogle Scholar
  81. 81.
    Bhushan B, Paquet L, Spain JC, Hawari J (2003) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp strain FA1. Appl Environ Microbiol 69(9):5216–5221CrossRefGoogle Scholar
  82. 82.
    Kholod Y, Okovytyy S, Kuramshina G, Qasim M, Gorb L, Leszczynski J (2007) An analysis of stable forms of CL-20: a DFT study of conformational transitions, infrared and Raman spectra. J Mol Struct 843(1–3):14–25CrossRefGoogle Scholar
  83. 83.
    Qasim M, Fredrickson H, Honea P, Furey J, Leszcznski J, Okovytyy S, Szecsody J, Kholod Y (2005) Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction. SAR QSAR Environ Res 16:495–515CrossRefGoogle Scholar
  84. 84.
    Foltz MF (1994) Thermal stability of ε-hexanitrohexaazaisowurtzitane in an Estane formulation. Propellants, Explos, Pyrotech 19(2):63–69CrossRefGoogle Scholar
  85. 85.
    Goede P, Latypov NV, Oestmark H (2004) Fourier transform Raman Spectroscopy of the four crystallographic phases of α, β, γ and ε 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[55005,903,11]dodecane (HNIW, CL-20). Propellants, Explos, Pyrotech 29(4):205–208CrossRefGoogle Scholar
  86. 86.
    Ulrich TF (2005) Energetic materials: particle processing and characterization. Wiley, New YorkGoogle Scholar
  87. 87.
    Nair UR, Gore GM, Sivabalan R, Satpute RS, Asthana SN, Singh H (2004) Studies on polymer coated CL-20-the most powerful explosive J Polym Mater 21(4):377–382Google Scholar
  88. 88.
    Nair UR, Sivabalan R, Gore GM, Dudek K, Marecek P, Vavra P (2000) Laboratory testing of HNIW mixtures. Proc. 31st Int Conf ICT, Karlsruhe, June 27–30 (2000), pp 110/1–110/6Google Scholar
  89. 89.
    Mezger MJ, Nicholich SM, Geiss DA et al (1999) Performance and hazard characterzation of CL-20 formulations. In: Proceedings of 30th International Annual Conference of ICT, Karlsruhe, June 29–July 2 (1999), pp. 4/1–4/14Google Scholar
  90. 90.
    Tian Y, Xu R, Zhou Y, Nie F (2001) Study on formulation of CL-20. In: Procecings of 4th International Autumn Seminar on Propellants, Explos, Pyrotech Shaoxing, China, pp 43–47Google Scholar
  91. 91.
    Golfier M, Graindorge H, Longevialle Y, Mace H (1998) New energetic molecules and their applications in the energetic materials. In: Proceedings of 29th International Annual Conf. of ICT, Karlsruhe, 30 June–3 July 1998, pp 3/1–3/17Google Scholar
  92. 92.
    Li J, Brill TB (2006) Nanostructured energetic composites of CL-20 and binders synthesized by sol gel methods. Propellants, Explos, Pyrotech 31:61–69CrossRefGoogle Scholar
  93. 93.
    Wagstaff DC (2002) Desensitization of energetic materialsby energetic plasticizer, Brit. UK Pat. Appl GB 2374867 A1, 30 October 2002Google Scholar
  94. 94.
    Mueller D (1999) New gun propellant with CL-20. Propellants, Explos, Pyrotech 24(3):176–181. doi: 10.1002/(SICI)1521-4087(199906)24:03<176:AID-PREP176>30CO;2-4 CrossRefGoogle Scholar
  95. 95.
    Weiser V, Eisenreich N, Eckl W, Eisele S, Menke K (2000) Burning behavior of CL-20/GAP and HMX/GAP rocket propellants. In: International Annual Conference on ICT 31st (Energetic Materials), pp 144/141–144/146Google Scholar
  96. 96.
    Nair UR, Gore GM, Sivabalan R, Divekar CN, Asthana SN, Singh H (2004) Studies on advanced CL-20-based composite modified double-base propellants. J Propul Power 20(5):952–955; Thepenier J, Fanblanc G (2001) Acta Austronautica, 38:245Google Scholar
  97. 97.
    Thepenier J, Fanblanc G (2001) Advanced technologies available for future solid propellant grains. Acta Austronautica 48(5–12):245–255CrossRefGoogle Scholar
  98. 98.
    Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Kumas CW, Davis EA (2006) U S Army Research, Development and Engineering., ECBC-TR-485Google Scholar
  99. 99.
    Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Davis EA (2006) Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere 62(8):1282–1293CrossRefGoogle Scholar

Additional Scholarly Articles for Further Reading

  1. 100.
    Agrawal JP, Walley SM, Field JE (1998) A high-speed photographic study of the impact initiation of hexanitro-hexaaza-isowurtzitane and nitrotriazolone. Combust Flame 112(1/2):62–72. doi: 10.1016/S0010-2180(97)81757-9 CrossRefGoogle Scholar
  2. 101.
    Aldoshin SM, Aliev ZG, Goncharov TK (2014) Crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane solvate with ε-caprolactam. J Struct Chem 55(4):709–712. doi: 10.1134/S0022476614040179 CrossRefGoogle Scholar
  3. 102.
    Aldoshin SM, Aliev ZG, Goncharov TK, Korchagin DV, Milekhin YM, Shishov NI (2011) New conformer of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). Crystal and molecular structures of the CL-20 solvate with glyceryl triacetate. Russ Chem Bull 60(7):1394–1400. doi: 10.1007/s11172-011-0209-5
  4. 103.
    Aldoshin SM et al (2014) Crystal structure of cocrystals 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[]dodecane with 7H-tris-1,2,5-oxadiazolo(3,4-b:3′,4′-d:3″,4″-f)azepine. J Struct Chem 55(2):327–331. doi: 10.1134/S0022476614020206 CrossRefGoogle Scholar
  5. 104.
    Alnemrat S, Hooper JP (2013) Predicting temperature-dependent solid vapor pressures of explosives and related compounds using a quantum mechanical continuum solvation model. J Phys Chem A 117(9):2035–2043. doi: 10.1021/jp400164j CrossRefGoogle Scholar
  6. 105.
    Alnemrat S, Hooper JP (2014) Predicting solubility of military, homemade, and green explosives in pure and saline water using COSMO-RS. Propellants, Explos, Pyrotech 39(1):79–89. doi: 10.1002/prep.201300071 CrossRefGoogle Scholar
  7. 106.
    Ammon HL (2008) Updated atom/functional group and atom_code volume additivity parameters for the calculation of crystal densities of single molecules, organic salts, and multi-fragment materials containing H, C, B, N, O, F, S, P, Cl, Br, and I. Propellants, Explos, Pyrotech 33(2):92–102. doi: 10.1002/prep.200700054 CrossRefGoogle Scholar
  8. 107.
    Amwele HR, Papirom P, Chukanhom K, Beamish FHW, Petkam R (2015) Acute and subchronic toxicity of metal complex azo acid dye and anionic surfactant oil on fish Oreochromis niloticus. J Environ Biol 36(1):199–205, 7pGoogle Scholar
  9. 108.
    Andelkovic-Lukic M (2000) New high explosive—polycyclic nitramine hexanitrohexaazaisowurtzitane (HNIW, CL-20). Naucno-Teh Pregl 50(6):60–64Google Scholar
  10. 109.
    Anderson SR, am Ende DJ, Salan JS, Samuels P (2014) Preparation of an energetic-energetic cocrystal using resonant acoustic mixing. Propellants, Explos, Pyrotech 39(5):637–640 doi: 10.1002/prep.201400092
  11. 110.
    Atwood AI et al (1999) Burning rate of solid propellant ingredients, part 1: pressure and initial temperature effects. J Propul Power 15(6):740–747. doi: 10.2514/2.5522 CrossRefGoogle Scholar
  12. 111.
    Paromov AE, Sysolyatin SV, Gatilov YV (2016) An acid-catalyzed cascade synthesis of oxaazatetracyclo [,11.05,9]dodecane derivatives. J Energ Mater. doi: 10.1080/07370652.2016.1194499
  13. 112.
    Atwood AI et al (1999) Burning rate of solid propellant ingredients, part 2: determination of burning rate temperature sensitivity. J Propul Power 15(6):748–752. doi: 10.2514/2.5523 CrossRefGoogle Scholar
  14. 113.
    Aubuchon CM, Rector KD, Holmes W, Fayer MD (1999) Nitro group asymmetric stretching mode lifetimes of molecules used in energetic materials. Chem Phys Lett 299(1):84–90. doi: 10.1016/S0009-2614(98)01241-X CrossRefGoogle Scholar
  15. 114.
    Balakrishnan VK, Halasz A, Hawari J (2003) Alkaline Hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol 37(9):1838–1843. doi: 10.1021/es020959h CrossRefGoogle Scholar
  16. 115.
    Balakrishnan VK, Monteil-Rivera F, Gautier MA, Hawari J (2004) Sorption and stability of the polycyclic nitramine explosive CL-20 in soil. J Environ Qual 33(4):1362–1368. doi: 10.2134/jeq2004.1362 CrossRefGoogle Scholar
  17. 116.
    Balakrishnan VK, Monteil-Rivera F, Halasz A, Corbeanu A, Hawari J (2004) Decomposition of the polycyclic nitramine explosive, CL-20, by FeO. Environ Sci Technol 38(24):6861–6866. doi: 10.1021/es049423h CrossRefGoogle Scholar
  18. 117.
    Bardai G, Sunahara GI, Spear PA, Martel M, Gong P, Hawari J (2005) Effects of dietary administration of CL-20 on Japanese Quail Coturnix coturnix japonica. Arch Environ Contam Toxicol 49(2):215–222. doi: 10.1007/s00244-004-0231-9 CrossRefGoogle Scholar
  19. 118.
    Bardai GK et al (2006) In vitro degradation of hexanitrohexaazaisowurtzitane (CL-20) by cytosolic enzymes of Japanese quail and the rabbit. Environ Toxicol Chem 25(12):3221–3229. doi: 10.1897/06-068R.1 CrossRefGoogle Scholar
  20. 119.
    Bayat Y et al (2013) Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane using Melaminium-tris(hydrogensulfate) by a Simple One-pot Nitration Procedure. Propellants, Explos, Pyrotech 38(6):745–747. doi: 10.1002/prep.201300034 CrossRefGoogle Scholar
  21. 120.
    Bayat Y, Mokhtari J, Farhadian N, Bayat M (2012) Heteropolyacids: an efficient catalyst for synthesis of CL-20. J Energ Mater 30(2):124–134. doi: 10.1080/07370652.2010.549539 CrossRefGoogle Scholar
  22. 121.
    Bayat Y, Pourmortazavi SM, Ahadi H, Iravani H (2013) Taguchi robust design to optimize supercritical carbon dioxide anti-solvent process for preparation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanoparticles. Chem Eng J 230:432–438 doi: 10.1016/j.cej.2013.06.100
  23. 122.
    Bayat Y, Soleyman R, Zarandi M (2015) Synthesis and characterization of novel 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo dodecane based nanopolymer-bonded explosives by microemulsion. J Mol Liq 206:190–194. doi: 10.1016/j.molliq.2015.02.019 CrossRefGoogle Scholar
  24. 123.
    Bazaki H, Kawabe S, Miya H, Kodama T (1998) Synthesis and sensitivity of hexanitrohexaaza-isowurtzitane (HNIW). Propellants, Explos, Pyrotech 23(6):333–336. doi: 10.1002/(SICI)1521-4087(199812)23:6<333:AID-PREP333>3.0.CO;2-X CrossRefGoogle Scholar
  25. 124.
    Behler KD, Pesce-Rodriguez R, Cabalo J, Sausa R (2013) Infrared spectroscopy and density functional theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations. Spectrochim Acta, Part A 114:708–712. doi: 10.1016/j.saa.2013.05.075 CrossRefGoogle Scholar
  26. 125.
    Behrens R (2005) Thermal decomposition processes of energetic materials in the condensed phase at low and moderate temperatures. Adv Ser Phys Chem 16(Overviews of Recent Research on Energetic Materials):29–73Google Scholar
  27. 126.
    Bhushan B, Halasz A, Hawari J (2004) Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Commun 322(1):271–276. doi: 10.1016/j.bbrc.2004.07.115 CrossRefGoogle Scholar
  28. 127.
    Bhushan B, Halasz A, Spain JC, Hawari J (2004) Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol 70(7):4040–4047. doi: 10.1128/AEM.70.7.4040-4047.2004 CrossRefGoogle Scholar
  29. 128.
    Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316(3):816–821. doi: 10.1016/j.bbrc.2004.02.120 CrossRefGoogle Scholar
  30. 129.
    Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: A 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12(9):4311–4314. doi: 10.1021/cg3010882 CrossRefGoogle Scholar
  31. 130.
    Bonin PML, Bejan D, Radovic-Hrapovic Z, Halasz A, Hawari J, Bunce NJ (2005) Indirect oxidation of RDX, HMX, and CL-20 cyclic nitramines in aqueous solution at boron-doped diamond electrodes. Environ Chem 2(2):125–129. doi: 10.1071/EN05006 CrossRefGoogle Scholar
  32. 131.
    Boudreau AE, Hoatson DM (2004) Halogen variations in the paleoproterozoic layered mafic-ultramafic intrusions of East Kimberley, Western Australia: implications for platinum group element mineralization. Econ Geol 99(5):1015–1026CrossRefGoogle Scholar
  33. 132.
    Bresler PI (1966) Gas analyzer for determination of chlorine concentrations in gas mixtures. Zavod Lab 32(6):7–766Google Scholar
  34. 133.
    Bunte G, Pontius H, Kaiser M (1999) Analytical characterization of impurities or byproducts in new energetic materials. Propellants, Explos, Pyrotech 24(3):149–155. doi: 10.1002/(SICI)1521-4087(199906)24:03<149:AID-PREP149>3.0.CO;2-4 CrossRefGoogle Scholar
  35. 134.
    Byrd EFC, Chabalowski CF, Rice BM (2007) An Ab initio study of nitromethane, HMX, RDX, CL-20, PETN, and TATB. Science Press, pp 696–700Google Scholar
  36. 135.
    Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013CrossRefGoogle Scholar
  37. 136.
    Byrd EFC, Rice BM (2007) Ab initio study of compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and pentaerythritol tetranitrate (PETN). J Phys Chem C 111(6):2787–2796. doi: 10.1021/jp0617930 CrossRefGoogle Scholar
  38. 137.
    Bywater WG, Coleman WR, Kamm O, Merritt HH (1945) Synthetic anticonvulsants. Preparation and properties of some benzoxazoles. J Am Chem Soc 67:7–905. doi: 10.1021/ja01222a008 CrossRefGoogle Scholar
  39. 138.
    Campbell JA, Szecsody JE, Devary BJ, Valenzuela BR (2007) Electrospray ionization mass spectrometry of hexanitrohexaazaisowurtzitane (CL-20). Anal Lett 40(10):1972–1978. doi: 10.1080/00032710701484459 CrossRefGoogle Scholar
  40. 139.
    Chambers RD, Musgrave WKR, Urben PG (1975) Chlorination of perfluorodiazines. J Fluorine Chem 5(3):6–275. doi: 10.1016/S0022-1139(00)82489-6 CrossRefGoogle Scholar
  41. 140.
    Chan RKS, Anselmo KJ, Reynolds CE, Worman CH (1978) Diffusion of vinyl chloride from PVC packaging material into food simulating solvents. Polym Eng Sci 18(7):6–601. doi: 10.1002/pen.760180709 CrossRefGoogle Scholar
  42. 141.
    Chang C-L, Lee J-S, Hsu C-K, Shieh B (2001) Thermal decomposition properties of CL-20 and NTO. Proc NATAS Annu Conf Therm Anal Appl 29th:685–690Google Scholar
  43. 142.
    Chapman RD, Hollins RA (2008) Benzylamine-Free, heavy-metal-free synthesis of CL-20 via hexa(1-propenyl)hexaazaisowurtzitane. J Energ Mater 26(4):246–273. doi: 10.1080/07370650802182385 CrossRefGoogle Scholar
  44. 143.
    Chernyshev EA, Mironov VF, Petrov AD (1960) New method of preparation of organosilicon monomers by high temperature condensation of alkenyl chlorides, aryl chlorides, and olefins with hydrosilanes. Izv Akad Nauk SSSR, Ser Khim:2147–2156Google Scholar
  45. 144.
    Chung K-H, Kil H-S, Choi I-Y, Chu C-K, Lee I-M (2000) New precursors for hexanitrohexaazaisowurtzitane (HNIW, CL-20). J Heterocycl Chem 37(6):1647–1649. doi: 10.1002/jhet.5570370640 CrossRefGoogle Scholar
  46. 145.
    Clawson JS, Anderson KL, Pugmire RJ, Grant DM (2004) 15 N NMR Chemical Shift Tensors of Substituted Hexaazaisowurtzitanes: The Intermediates in the Synthesis of CL-20. J Phys Chem A 108(14):2638–2644. doi: 10.1021/jp0373999 CrossRefGoogle Scholar
  47. 146.
    Collet C, Dervaux M, Werschine M (2011) B2514A: a novel enhanced blast explosive. Proc Int Pyrotech Semin 37th(EUROPYRO 2011):72–84Google Scholar
  48. 147.
    Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73(2):274–290. doi: 10.1007/s00253-006-0588-y CrossRefGoogle Scholar
  49. 148.
    Crocker FH, Thompson KT, Szecsody JE, Fredrickson HL (2005) Biotic and abiotic degradation of CL-20 and RDX in soils. J Environ Qual 34(6):2208–2216. doi: 10.2134/jeq2005.0032 CrossRefGoogle Scholar
  50. 149.
    DeTata D, Collins P, McKinley A (2013) A fast liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) method for the identification of organic explosives and propellants. Forensic Sci Int 233(1–3):63–74. doi: 10.1016/j.forsciint.2013.08.007 CrossRefGoogle Scholar
  51. 150.
    Divekar CN, Sanghavi RR, Nair UR, Chakraborthy TK, Sikder AK, Singh A (2010) Closed-vessel and thermal studies on triple-base gun propellants containing CL-20. J Propul Power 26(1):120–124. doi: 10.2514/1.40895 CrossRefGoogle Scholar
  52. 151.
    Doriath G (1995) Energetic insensitive propellants for solid and ducted rockets. J Propul Power 11(4):82–870. doi: 10.2514/3.23912 CrossRefGoogle Scholar
  53. 152.
    Dorofeeva OV, Suntsova MA (2015) Enthalpy of formation of CL-20. Comput Theor Chem 1057:54–59. doi: 10.1016/j.comptc.2015.01.015 CrossRefGoogle Scholar
  54. 153.
    Dubovik AV, Kozak GD, Aleshkina EA (2007) Theoretical estimation of explosion hazard of NTO, FOX-7, TNAZ, and CL-20. University of Pardubice, pp 484–495Google Scholar
  55. 154.
    Dumas S, Gauvrit JY, Lanteri P (2012) Determining the polymorphic purity of ε-CL20 contaminated by other polymorphs through the use of FTIR spectroscopy with PLS regression. Propellants, Explos, Pyrotech 37(2):230–234. doi: 10.1002/prep.200900090 CrossRefGoogle Scholar
  56. 155.
    Dziura R, Kazimierczuk R, Skupinski W, Pienkowski L, Grzelczyk S (2003) Reductive debenzylation in synthesis of hexanitrohexaazaisowurtzitane (HNIW, CL-20). Organika:31–43Google Scholar
  57. 156.
    Elbeih A, Zeman S, Jungova M, Vavra P (2013) Attractive nitramines and related PBXs. Propellants, Explos, Pyrotech 38(3):379–385. doi: 10.1002/prep.201200011 CrossRefGoogle Scholar
  58. 157.
    Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi. Chemosphere 63(1):175–181. doi: 10.1016/j.chemosphere.2005.06.052 CrossRefGoogle Scholar
  59. 158.
    Gar KA (1958) Field trials of 65% chlorten. Org Insektofungitsidy i Gerbitsidy:208–230Google Scholar
  60. 159.
    Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: The most powerful high energy material. J Therm Anal Calorim 73(3):913–922CrossRefGoogle Scholar
  61. 160.
    Ghosh M et al (2014) Probing crystal growth of ε- and α-CL-20 polymorphs via metastable phase transition using microscopy and vibrational spectroscopy. Cryst Growth Des 14(10):5053–5063. doi: 10.1021/cg500644w CrossRefGoogle Scholar
  62. 161.
    Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114(1):498–503. doi: 10.1021/jp9071839 CrossRefGoogle Scholar
  63. 162.
    Gnirke AU, Weidle UH (1998) Investigation of prevalence and regulation of expression of progression associated protein (PAP). Anticancer Res 18(6A):4363–4369Google Scholar
  64. 163.
    Gnirke AU, Weidle UH (1998) Investigation of prevalence and regulation of expression of progression associated protein (PAP). Anticancer Res 18(6A):4363–4369Google Scholar
  65. 164.
    Goede P, Latypov NV, Oestmark H (2004) Fourier transform Raman Spectroscopy of the four crystallographic phases of α, β, γ and ε 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[,9.03,11]dodecane (HNIW, CL-20). Propellants, Explos, Pyrotech 29(4):205–208 doi: 10.1002/prep.200400047
  66. 165.
    Golofit T, Zysk K (2015) Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO. J Therm Anal Calorim 119(3):1931–1939. doi: 10.1007/s10973-015-4418-2 CrossRefGoogle Scholar
  67. 166.
    Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56(7):653–658. doi: 10.1016/j.chemosphere.2004.04.010 CrossRefGoogle Scholar
  68. 167.
    Granito C, Schultz HP (1963) Decarboxylation studies. II. Preparation of alkyl phenyl ketones. J Org Chem 28:81–879. doi: 10.1021/jo01038a521 CrossRefGoogle Scholar
  69. 168.
    Greenberg BL, Kalyon DM, Erol M, Mezger M, Lee K, Lusk S (2003) Analysis of slurry-coating effectiveness of CL-20 using grazing incidence x-ray diffraction. J Energ Mater 21(3):185–199. doi: 10.1080/716100383 CrossRefGoogle Scholar
  70. 169.
    Groom CA, Halasz A, Paquet L, D’Cruz P, Hawari J (2003) Cyclodextrin-assisted capillary electrophoresis for determination of the cyclic nitramine explosives RDX, HMX and CL-20. Comparison with high-performance liquid chromatography. J Chromatogr, A 999(1–2):17–22 doi: 10.1016/S0021-9673(03)00389-3
  71. 170.
    Hakansson K, Coorey RV, Zubarev RA, Talrose VL, Hakansson P (2000) Low-mass ions observed in plasma desorption mass spectrometry of high explosives. J Mass Spectrom 35(3):337–346CrossRefGoogle Scholar
  72. 171.
    Hawari J, Deschamps S, Beaulieu C, Paquet L, Halasz A (2004) Photodegradation of CL-20: insights into the mechanisms of initial reactions and environmental fate. Water Res 38(19):4055–4064. doi: 10.1016/j.watres.2004.06.032 CrossRefGoogle Scholar
  73. 172.
    Hoffmann RW, Sieber W, Guhn G (1965) Decomposition of 1,2,3-benzothiadiazole 1,1-dioxide. Chem Ber 98(11):8–3470CrossRefGoogle Scholar
  74. 173.
    Hultquist ME et al (1951) N-Heterocyclic benzenesulfonamides. J Am Chem Soc 73:66–2558. doi: 10.1021/ja01150a042 Google Scholar
  75. 174.
    Isayev O, Gorb L, Qasim M, Leszczynski J (2008) Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B 112(35):11005–11013. doi: 10.1021/jp804765m CrossRefGoogle Scholar
  76. 175.
    Kaste PJ, Rice BM (2004) Novel energetic materials for the future force: the army pursues the next generation of propellants and explosives. AMPTIAC Q 8(4):85–89Google Scholar
  77. 176.
    Keshavarz MH, Yousefi MH (2008) Heats of sublimation of nitramines based on simple parameters. J Hazard Mater 152(3):929–933. doi: 10.1016/j.jhazmat.2007.07.067 CrossRefGoogle Scholar
  78. 177.
    Kholod Y et al (2006) Are 1,5- and 1,7-dihydrodiimidazo[4,5-b:4’,5’-e]pyrazine the main products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) alkaline hydrolysis? A DFT study of vibrational spectra. J Mol Struct 794(1–3):288–302. doi: 10.1016/j.molstruc.2006.02.061 CrossRefGoogle Scholar
  79. 178.
    Kholod Y, Kosenkov D, Okovytyy S, Gorb L, Qasim M, Leszczynski J (2008) CL-20 photodecomposition: Ab initio foundations for identification of products. Spectrochim Acta, Part A 71A(1):230–237. doi: 10.1016/j.saa.2007.12.021 CrossRefGoogle Scholar
  80. 179.
    Kim J-H, Park Y-C, Yim Y-J, Han J-S (1998) Crystallization behavior of hexanitrohexaazaisowurtzitane at 298 K and quantitative analysis of mixtures of its polymorphs by FTIR. J Chem Eng Jpn 31(3):478–481. doi: 10.1252/jcej.31.478 CrossRefGoogle Scholar
  81. 180.
    Kim J-H, Park Y-C, Yim Y-J, Han J-S (1998) Crystallization behavior of hexanitrohexaazaisowurtzitane at 298 K and quantitative analysis of mixtures of its polymorphs by FTIR. J Chem Eng Jpn 31(3):478–481. doi: 10.1252/jcej.31.478 CrossRefGoogle Scholar
  82. 181.
    Klapotke TM, Ang H-G (2001) Estimation of the crystalline density of nitramine (N-NO2 based) high energy density materials (HEDM). Propellants, Explos, Pyrotech 26(5):221–224. doi: 10.1002/1521-4087(200112)26:5<221:AID-PREP221>3.0.CO;2-T CrossRefGoogle Scholar
  83. 182.
    Klapötke TM, Witkowski TG (2016) Covalent and Ionic Insensitive High-Explosives. Propellants, Explos, Pyrotech 41:470–483. doi: 10.1002/prep.201600006 CrossRefGoogle Scholar
  84. 183.
    Knox-Holmes B (1993) Biofouling control with low levels of copper and chlorine. Biofouling 7(2):66–157. doi: 10.1080/08927019309386250 CrossRefGoogle Scholar
  85. 184.
    Koslik P, Stas J, Wilk Z, Zakrzewski A (2007) Research of high explosives based on RDX, HMX and CL-20 in the small scale underwater test examination. Cent Eur J Energ Mater 4(3):3–13Google Scholar
  86. 185.
    Koutsospyros A, Christodoulatos C, Panikov N, Malcheva O, Karakaya P, Nicolich S (2004) Environmental relevance of CL-20: preliminary findings. Water Air Soil Pollut Focus 4(4–5):459–470. doi: 10.1023/B:WAFO.0000044818.76609.e9 CrossRefGoogle Scholar
  87. 186.
    Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19(11):4909–4917. doi: 10.1007/s00894-013-1988-4 CrossRefGoogle Scholar
  88. 187.
    Li J, Brill TB (2007) Kinetics of solid polymorphic phase transitions of CL-20. Propellants, Explos, Pyrotech 32(4):326–330. doi: 10.1002/prep.200700036 CrossRefGoogle Scholar
  89. 188.
    Lizlovs EA, Bond AP (1975) Effect of low-temperature aging on corrosion resistance of chromium-molybdenum (18Cr-2Mo) titanium-stabilized ferritic stainless steel. J Electrochem Soc 122(5):93–589. doi: 10.1149/1.2134271 CrossRefGoogle Scholar
  90. 189.
    Maksimowski P, Skupinski W, Szczygielska J (2013) Comparison of the crystals obtained by precipitation of CL-20 with different chemical purity. Propellants, Explos, Pyrotech 38(6):791–797. doi: 10.1002/prep.201300064 CrossRefGoogle Scholar
  91. 190.
    Marvin KW, Fujimoto W, Jetten AM (1995) Identification and characterization of a novel squamous cell-associated gene related to PMP22. J Biol Chem 270(48):16–28910. doi: 10.1074/jbc.270.48.28910 CrossRefGoogle Scholar
  92. 191.
    Mathieu J, Stucki H (2004) Military high explosives. Chimia 58(6):383–389. doi: 10.2533/0000942904777677669 CrossRefGoogle Scholar
  93. 192.
    Meents A, Dittrich B, Johnas SKJ, Thome V, Weckert EF (2008) Charge-density studies of energetic materials: CL-20 and FOX-7. Acta Crystallogr Sect B: Struct Sci 64(4):519. doi: 10.1107/S0108768108017497 CrossRefGoogle Scholar
  94. 193.
    Millar DIA et al (2012) Crystal engineering of energetic materials: Co-crystals of CL-20. CrystEngComm 14(10):3742–3749. doi: 10.1039/c2ce05796d CrossRefGoogle Scholar
  95. 194.
    Molt RW, Bartlett RJ, Watson T, Bazante AP (2012) Conformers of CL-20 explosive and ab initio refinement using perturbation theory: implications to detonation mechanisms. J Phys Chem A 116(49):12129–12135. doi: 10.1021/jp305443h CrossRefGoogle Scholar
  96. 195.
    Monteil-Rivera F et al (2009) Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation. Environ Pollut 157(1):77–85CrossRefGoogle Scholar
  97. 196.
    Naik NH, Gore GM, Gandhe BR, Sikder AK (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). J Hazard Mater 159(2–3):630–635. doi: 10.1016/j.jhazmat.2008.02.049 CrossRefGoogle Scholar
  98. 197.
    Namasivayam C, Kanagarathinam A (1992) Distillery wastewater treatment using waste iron(3+)/chromium(3+) hydroxide sludge and polymer flocculants. J Environ Sci Health, Part A A 27(7):37–1721Google Scholar
  99. 198.
    Nedelko VV et al (2000) Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL-20). Propellants, Explos, Pyrotech 25(5):255–259. doi: 10.1002/1521-4087(200011)25:5<255:AID-PREP255>3.0.CO;2-8 CrossRefGoogle Scholar
  100. 199.
    Oehrle SA (1996) Analysis of nitramine and nitroaromatic explosives by micellar electrokinetic capillary chromatography (MECC). J Energ Mater 14(1):47–56. doi: 10.1080/07370659608216057 CrossRefGoogle Scholar
  101. 200.
    Ogata Y, Kawasaki A, Nakagawa K (1964) Kinetics of the formation of benzoguanamine from dicyandiamide and benzonitrile. Tetrahedron 20(12):61–2755. doi: 10.1016/S0040-4020(01)98493-5 Google Scholar
  102. 201.
    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) The Mechanism of Unimolecular Decomposition of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study. J Phys Chem A 109(12):2964–2970. doi: 10.1021/jp045292v CrossRefGoogle Scholar
  103. 202.
    Patel AR, Oneto JF (1963) Basic 1,3-dioxolanes. J Pharm Sci 52(6):92–588. doi: 10.1002/jps.2600520618 Google Scholar
  104. 203.
    Paulin A, Jobson BA, Vukcevic S (1981) Chlorination of alumina-containing materials in fluidized bed. Trav Com Int Etude Bauxites, Alumine Alum 16:70–161Google Scholar
  105. 204.
    Peralta-Inga Z, Degirmenbasi N, Olgun U, Gocmez H, Kalyon DM (2006) Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: part I, mathematical modeling using molecular dynamics method. J Energ Mater 24(2):69–101. doi: 10.1080/07370650600672082 CrossRefGoogle Scholar
  106. 205.
    Pivina T, Korolev V, Khakimov D, Petukhova T, Ivshin V, Lempert D (2012) Computer simulation of decomposition mechanisms for CL-20, hydrazine, and their binary system. Propellants, Explos, Pyrotech 37(4):502–509. doi: 10.1002/prep.201100098 CrossRefGoogle Scholar
  107. 206.
    Reeves CC Jr, Miller WD (1978) Nitrate, chloride and dissolved solids, Ogallala aquifer, west Texas. Ground Water 16(3):73–167. doi: 10.1111/j.1745-6584.1978.tb03218.x CrossRefGoogle Scholar
  108. 207.
    Robidoux PY et al (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23(4):1026–1034. doi: 10.1897/03-308 CrossRefGoogle Scholar
  109. 208.
    Sandor A (1964) Thermionic emission from barium-coated ultrapure nickel in the emission microscope. J Electron Control 17(4):91–377. doi: 10.1080/00207216408937712 CrossRefGoogle Scholar
  110. 209.
    Sandor A (1964) Thermionic emission from barium-coated ultrapure nickel in the emission microscope. J Electron Control 17(4):91–377. doi: 10.1080/00207216408937712 CrossRefGoogle Scholar
  111. 210.
    Sausa RC, Cabalo JB (2012) The detection of energetic materials by laser photoacoustic overtone spectroscopy. Appl Spectrosc 66(9):993–998. doi: 10.1366/12-06699 CrossRefGoogle Scholar
  112. 211.
    Schefflan R, Kovenklioglu S, Kalyon D, Redner P, Heider E (2006) Mathematical model for a fed-batch crystallization process for energetic crystals to achieve targeted size distributions. J Energ Mater 24(2):157–172. doi: 10.1080/07370650600672058 CrossRefGoogle Scholar
  113. 212.
    Sikder AK, Sikder N, Gandhe BR, Agrawal JP, Singh H (2002) Hexanitrohexaazaisowurtzitane or CL-20 in India: synthesis and characterisation. Def Sci J 52(2):135–146CrossRefGoogle Scholar
  114. 213.
    Sinditskii VP, Burzhava AV, Sheremetev AB, Aleksandrova NS (2012) Thermal and combustion properties of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF). Propellants, Explos, Pyrotech 37(5):575–580. doi: 10.1002/prep.201100095 CrossRefGoogle Scholar
  115. 214.
    Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA, Chernyi AN (2012) Combustion mechanism of energetic binders with nitramines. Int J Energ Mater Chem Propul 11(5):427–449. doi: 10.1615/IntJEnergeticMaterialsChemProp.2013005557 Google Scholar
  116. 215.
    Singh H (2005) Current trend of R&D in the field of high energy materials: an overview. Explosion 15(3):120–132Google Scholar
  117. 216.
    Sivabalan R, Gore GM, Nair UR, Saikia A, Venugopalan S, Gandhe BR (2007) Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity. J Hazard Mater 139(2):199–203. doi: 10.1016/j.jhazmat.2006.06.027 CrossRefGoogle Scholar
  118. 217.
    Souers PC et al (2001) Detonation energies from the cylinder test and CHEETAH V3.0. Propellants, Explos, Pyrotech 26(4):180–190 doi: 10.1002/1521-4087(200110)26:4<180::AID-PREP180>3.0.CO;2-K
  119. 218.
    Steinmetz I, Rott L, Boer C (1966) Enrichment of ground waters with surface waters. Hidrobiologia 7:195–201Google Scholar
  120. 219.
    Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2005) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) degradability in soil. Environ Pollut 139(2):353–361. doi: 10.1016/j.envpol.2005.05.002
  121. 220.
    Suzuki J et al (1984) Performance of Shimadzu clinical chemistry analyzer CL-20. Shimadzu Hyoron 41(4):45–229Google Scholar
  122. 221.
    Szecsody JE, Girvin DC, Devary BJ, Campbell JA (2004) Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments. Chemosphere 56(6):593–610. doi: 10.1016/j.chemosphere.2004.04.028 CrossRefGoogle Scholar
  123. 222.
    Talawar MB et al (2006) Effect of organic additives on the mitigation of volatility of 1-nitro-3,3’-dinitroazetidine (TNAZ): Next generation powerful melt castable high energy material. J Hazard Mater 134(1–3):8–18. doi: 10.1016/j.jhazmat.2003.10.008 CrossRefGoogle Scholar
  124. 223.
    Talawar MB, Sivabalan R, Polke BG, Nair UR, Gore GM, Asthana SN (2005) Establishment of process technology for the manufacture of dinitrogen pentoxide and its utility for the synthesis of most powerful explosive of today—CL-20. J Hazard Mater 124(1–3):153–164. doi: 10.1016/j.jhazmat.2005.04.021 CrossRefGoogle Scholar
  125. 224.
    Tappan AS, Basiliere M, Ball JP, Snedigar S, Fischer GJ, Salton J (2010) Linear actuation using milligram quantities of CL-20 and TAGDNAT. Propellants, Explos, Pyrotech 35(3):207–212. doi: 10.1002/prep.201000025 CrossRefGoogle Scholar
  126. 225.
    Tappan BC, Brill TB (2003) Thermal decomposition of energetic materials 86. Cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose. Propellants, Explos, Pyrotech 28(5):223–230 doi: 10.1002/prep.200300009
  127. 226.
    Thiboutot S, Brousseau P, Ampleman G, Pantea D, Cote S (2008) Potential use of CL-20 in TNT/ETPE-based melt cast formulations. Propellants, Explos, Pyrotech 33(2):103–108. doi: 10.1002/prep.200700223 CrossRefGoogle Scholar
  128. 227.
    Tian Q et al (2013) Thermally induced damage in hexanitrohexaazaisowurtzitane. Cent Eur J Energ Mater 10(3):359–369Google Scholar
  129. 228.
    Tomas-Alonso F, Rubio AM, Alvarez R, Ortuno JA (2013) Dynamic potential response and SEM-EDX studies of polymeric inclusion membranes based on ionic liquids. Int J Electrochem Sci 8(4):4955–4969Google Scholar
  130. 229.
    Urbelis JH, Young VG, Swift JA (2015) Using solvent effects to guide the design of a CL-20 cocrystal. CrystEngComm 17(7):1564–1568. doi: 10.1039/C4CE02285H CrossRefGoogle Scholar
  131. 230.
    Van der Heijden AEDM (1998) Crystallization and characterization of energetic materials. Curr Top Cryst Growth Res 4:99–114Google Scholar
  132. 231.
    van der Heijden AEDM, Bouma RHB, van der Steen AC (2004) Physicochemical parameters of nitramines influencing shock sensitivity. Propellants, Explos, Pyrotech 29(5):304–313. doi: 10.1002/prep.200400058 CrossRefGoogle Scholar
  133. 232.
    van der Heijden AEDM, Bouma RHB, van der Steen AC (2004) Physicochemical parameters of nitramines influencing shock sensitivity. Propellants, Explos, Pyrotech 29(5):304–313. doi: 10.1002/prep.200400058 CrossRefGoogle Scholar
  134. 233.
    Viswanath DS, Reinig M, Ghosh TK, Boddu VM (2010) Vapor pressure of nitro compounds, vol Pt. 1. University of Pardubice, Institute of Energetic Materials, pp 306–309Google Scholar
  135. 234.
    Viswanath JV, Venugopal KJ, Rao NVS, Venkataraman A (2016) An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW). Defence Technol 12(5), October 2016, pp 401–418Google Scholar
  136. 235.
    Volk F, Bathelt H (1997) Influence of energetic materials on the energy-output of gun propellants. Propellants, Explos, Pyrotech 22(3):120–124. doi: 10.1002/prep.19970220305 CrossRefGoogle Scholar
  137. 236.
    Volk F, Bathelt H (1995) Influence of energetic materials on the energy-output of gun propellants. Am Defense Preparedness Assoc: 82–89Google Scholar
  138. 237.
    von Holtz E, Ornellas D, Foltz MF, Clarkson JE (1994) The solubility of ε-CL-20 in selected materials. Propellants, Explos, Pyrotech 19(4):12–206. doi: 10.1002/prep.19940190410 Google Scholar
  139. 238.
    Wu Y, Ou Y, Liu Z, Liu J, Meng Z, Chen B (2004) Theoretical studies on the possible conformers and properties of tetranitrodiazidoacetylhexaazaisowurtzitane (TNDAIW). Sci China, Ser B: Chem 47(5):414–419. doi: 10.1360/04yb0046 Google Scholar
  140. 239.
    Xing X et al (2015) Thermal decomposition behavior of hexanitrohexaazaisowurtzitane and its blending with BTATz (expand) and Al by microcalorimetry. J Therm Anal Calorim: Ahead of Print. doi: 10.1007/s10973-015-4431-5
  141. 240.
    Yazici R, Kalyon D (2005) Microstrain and defect analysis of CL-20 crystals by novel x-ray methods. J Energ Mater 23(1):43–58. doi: 10.1080/07370650590920287 CrossRefGoogle Scholar
  142. 241.
    Zhang C et al (2014) Evident hydrogen bonded chains building CL-20-based cocrystals. Cryst Growth Des 14(8):3923–3928. doi: 10.1021/cg500796r CrossRefGoogle Scholar
  143. 242.
    Zhang P, Guo X-Y, Zhang J-Y, Jiao Q-J (2014) Application of liquid paraffin in castable CL-20-based PBX. J Energ Mater 32(4):278–292. doi: 10.1080/07370652.2013.862318 CrossRefGoogle Scholar
  144. 243.
    Zubarev RA, Hakansson P, Hakansson K, Talrose VL (1998) Matrix assisted particle desorption techniques: use of explosive matrixes. Adv Mass Spectrom 14:B061920/1–B061920/8Google Scholar

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations