Skip to main content

Hexanitrohexaazaisowurtzitane (HNIW, CL-20)

  • Chapter
  • First Online:

Abstract

Hexanitrohexaazaisowurtzitane, a nitroamine compound, has emerged as an important insensitive energetic material. This caged compound offers several interesting properties. This chapter discusses the properties and more importantly the formulations using CL-20.

This is a preview of subscription content, log in via an institution.

References

  1. Nielsen AT (1997) Caged polynitramine compound. US Patent 5693794

    Google Scholar 

  2. USA Navy Manteca (2004) Report of 2003. Dept of Navy, Fiscal Year 2003 Rpt

    Google Scholar 

  3. Nielsen AT, Nissan RA, Vanderah DJ, Coon CL, Gilardi RD, George CF, Lippen-Anderson JF (1990) Polyazapolycyclics by condensation of aldehydes with amines 2 Formation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazatetra – cyclo [55000] dodecanes from glyoxal and benzylamines. J Org Chem 55(5):1459–1466

    Article  CAS  Google Scholar 

  4. Crampton MR, Hamid J, Millar R, Ferguson G (1993) Studies of the synthesis, protonation and decomposition of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[55005,903,11]dodecane (HBIW). J Chem Soc Perkin Trans 2(5):923–929

    Article  Google Scholar 

  5. Edwards WW, Wardle RB (1998) Process for making 2,4,6, 8,10,12- hexanitro- 2,4,6,8,10, 12- hexa azatetracyclo 550 0 5,9 0 3,11] –dodecane. EP 1153025 A2 (WO2000052011A2), US Patent 5739325

    Google Scholar 

  6. Kodama T (1994) Preparation of hexakis (trimethylsilylethylcarbamyl) hexaazaisowurtzitane. JP06321962A

    Google Scholar 

  7. Kodama T, Tojo M, Ikeda M (1996) Acylated hexaazaisowurtzitane derivatives and process for producing the same. WO9623792A1

    Google Scholar 

  8. Ou Y-x, Xu Y-j, Liu L-h, Zheng F-p, Wang C, Chen J-t (1999) Comparison of acetonitrile process with ethanol process for synthesis of hexabenzylhexaazaisowurtzitane. Hanneng Cailiao 7(4):152–155

    Google Scholar 

  9. Ou Y, Xu Y, Chen B, Liu L, Wang C (1999) Synthesis of hexanitrohexaazaisowurtzitane from tetraacetyldiformylhexaazaisowurtzitane. Proc Int Pyrotech Semin 26th:406–411

    Google Scholar 

  10. Ou Y, Meng Z, Liu J (2007) Advance in high energy density compound CL-20-developments of synthesis route and production technologies of CL-20. Huagong Jinzhan 26(6):762–768

    CAS  Google Scholar 

  11. Sysolyatin SV, Lobanova AA, Chernikova YT, Sakovich GV (2005) Methods of synthesis and properties of hexanitrohexaazaisowurtzitane. Russ Chem Rev 74(8):757–764. doi:10.1070/RC2005v074n08ABEH001179

    Article  CAS  Google Scholar 

  12. Wang C, Ou Y-X, Chen B-R (2000) One pot synthesis of hexabenzylhexaazaiso-wurtzitane. Beijing LigongDaxueXuebao 20(4):521–523

    CAS  Google Scholar 

  13. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54(39):11793–11812. doi:10.1016/S0040-4020(98)83040-8

    Article  CAS  Google Scholar 

  14. Larson SL, Felt DR, Davis JL, Escalon L (2002) Analysis of CL-20 in environmental matrices: water and soil. J Chromatogr Sci 40(4):201–206. doi:10.1093/chromsci/404201

    Article  CAS  Google Scholar 

  15. Hamilton RS, Sanderson AJ, Wardle RB, Warner KF (2000) Studies of the crystallization of CL-20. International Annual Conference of ICT [Institut ChemischeTechnologie], 31st (Energetic Materials), 21/1–21/8

    Google Scholar 

  16. Bellamy AJ (1995) Reductive debenzylation of hexabenzylhexaazaisowurtzitane. Tetrahedron 51(16):4711–4722

    Article  CAS  Google Scholar 

  17. Surapaneni R, Damavarapu R, Kumar RA, Dave PR (2000) Process improvements in CL-20 manufacture. International Annual Conference of ICT, 31st (Energetic Materials), 108/1–108/4

    Google Scholar 

  18. Qian H, Ye Z-W, Lv C-X (2007) Efficient and facile synthesis of hexanitrohexaazaisowurtzitane (HNIW) for high energetic materials. Lett Org Chem 4(7):482–485

    Article  CAS  Google Scholar 

  19. Qian H, Chunxu LV, Zhiwen YE (2008) Synthesis of CL-20 by clean nitrating agent dinitrogen pentoxide. J Indian Chem Soc 85(4):434–439

    CAS  Google Scholar 

  20. Qian H, Ye Z-W, Lu C-X (2008) Synthesis of CL-20 via nitration and nitrolysis of 2,6,8,12-tetraacety l-2,4,6,8,10,12-hexaazaisowurtzitane with N2O5/HNO3. Yingyong Huaxue 25(3):378–380

    CAS  Google Scholar 

  21. Song ZW, Yan QL, Li XJ, Qi XF, Lim M (2010) Crystal transition of CL-20 in different solvents. Chin J Energ Mater 6:648–653

    Google Scholar 

  22. Gore GM, Sivabalan R, Nair UR, Saikia A, Venugopalan S, Gandhe BR (2007) Synthesis of CL-20: By oxidative debenzylation with cerium (IV) ammonium nitrate (CAN). Indian J Chem, Sect B: Org Chem Incl Med Chem 46B(3):505–508

    CAS  Google Scholar 

  23. Kawabe S, Miya H, Kodama T, Miyake N (2007) Process for the preparation of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane. US 6297372 B1, EP 0547735

    Google Scholar 

  24. Cagnon G, Eck G, Herve G, Jacob G (2007) Method for making new polycyclic polyamides as precursors for energetic polycyclic polynitramine oxidizers. US Patent 7279572

    Google Scholar 

  25. Latypov NV, Wellmar U, Goede P, Bellamy AJ (2000) Synthesis and Scale-Up of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12- hexaazaisowurtzitane (HNIW, CL-20). Org Proc Res Dev 4(3):156–158

    Article  CAS  Google Scholar 

  26. Pang S-P, Yu Y-Z, X-Q Zhao () A novel synthetic route to hexanitrohexa- azaisowurtzitane. Propellants, Explosives, Pyrotechnics 30(6):442–444

    Google Scholar 

  27. Chapman RD, Hollins RA (2008) Benzylamine-Free, heavy-metal-free synthesis of CL-20 via hexa(1-propenyl)hexaazaisowurtzitane. J Energ Mater 26(4):246–273

    Article  CAS  Google Scholar 

  28. Herve G, Jacob G, Gallo R (2006) Preparation and structure of novel hexaazaisowurtzitane cages. Chem Eur J 12(12):3339–3344

    Article  CAS  Google Scholar 

  29. Mandal AK, Pant CS, Kasar SM, Soman T (2009) Process Optimization for Synthesis of CL-20. J Energ Mater 27(4):231–246. doi:10.1080/07370650902732956

    Article  CAS  Google Scholar 

  30. Lu L, Xu B, Ma Z, Yue H, Mu W, Ou Y (2007) New method for synthesis and crystallizing of HNIW in nitric acid. In: Huang P, Wang Y, Li S (eds) 2007 Science Press, Proc Intl Autumn Seminar on Propellants, Explosives and Pyrotechnics, 7th, Xi’an, China, Oct 23–26, pp 64–65

    Google Scholar 

  31. Wang J, Li J, An C, Hou C, Xu W, Li X (2012) Study on ultrasound- and spray-assisted precipitation of CL-20. Propellants, Explos, Pyrotech 37(6):670–675

    Article  CAS  Google Scholar 

  32. van der Heijden AEDM, Bouma RHB (2004) Crystallization and characterization of RDX, HMX, and CL-20. Cryst Growth Des 4(5):999–1007

    Article  CAS  Google Scholar 

  33. Bellamy AJ (2003) A simple method for the purification of crude hexanitrohexaazaisowurtzitane (HNIW or CL20). Propellants, Explos, Pyrotech 28(3):145–152

    Article  CAS  Google Scholar 

  34. Degirmenbasi N, Peralta-Inga Z, Olgun U, Gocmez H, Kalyon DM (2006) Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: part II, experimental studies. J Energ Mater 24(2):103–139. doi:10.1080/07370650600672090

    Article  CAS  Google Scholar 

  35. Agrawal JP (2011) High Energy Materials. Wiley, Weinheim, Germany

    Google Scholar 

  36. Nair UR, Sivabalan R, Gore GM, Geetha M, Asthana SN, Singh H (2005) Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (Review). Combust Explosion Shock Waves 41:121–132

    Article  Google Scholar 

  37. Chapman RD, Hollins RA, Groshens TJ, Nissan DA (2006) Benzylamine-Free, heavy-metal-free synthesis of CL-20. SERDP seed Prohect WP-1518

    Google Scholar 

  38. Jin S, Shu Q, Chen S, Shi Y (2007) Preparation of e-HNIW by a one-pot method in concentrated nitric acid from tetraacetyldiformylhexaazaisowurtzitane. Propellants, Explos, Pyrotech 32(6):468–471

    Article  CAS  Google Scholar 

  39. Duddu R, Dave PR (1999) Processes and Compositions for Nitration of N-Substituted Isowurtzitane Compounds. Paten WO9957104, USA

    Google Scholar 

  40. Wardle RB, Hinshaw JC (2000) Synthesis and reactions of hexaazaisowurtzitane-type compounds in synthesis of hexanitrohexaazaisowurtzitane (HNIW) explosive. In: Cordant Technologies Inc, USA, Division of US Ser No 292 028, pp 8

    Google Scholar 

  41. Russell TP, Miller PJ, Piermarini GJ, Block S (1992) High-pressure phase transition in γ-hexanitrohexaazaisowurtzitane. J Phys Chem 96(13):5509–5512

    Article  CAS  Google Scholar 

  42. Ciezak JA, Jenkins TA, Liu Z (2007) Evidence for a high-pressure phase transition of ε-2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) using vibrational spectroscopy. Propellants, Explos, Pyrotech 32(6):472–477. doi:10.1002/prep200700209

    Article  CAS  Google Scholar 

  43. Gump JC, Peiris SM (2008) Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20). J Appl Phys 104(8):083509/1–083509/5. doi:10.1063/1.2990066

  44. Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG (2005) Thermal study of HNIW (CL-20). Thermochim Acta 433:105–115

    Article  CAS  Google Scholar 

  45. Ghosh M, Venkatesan V, Sikder AK, Sikder N (2012) Preparation and characterisation of ε-CL-20 by solvent evaporation and precipitation methods. Def Sci J 62(6):390–398

    Article  CAS  Google Scholar 

  46. Meents A, Dittrich B, Johnas SKJ, Thome V, Weckert EF (2008) Charge-density studies of energetic materials: CL-20 and FOX-7. Acta Crystallogr B 64(Pt 1):9–42

    Google Scholar 

  47. Chen H, Chen S, Li L, Jin S (2008) Quantitative determination of e-phase in polymorphic HNIW using diffraction patterns. Propellants, Explos, Pyrotech 33:467–471

    Article  CAS  Google Scholar 

  48. Cabalo JB, Sausa RC (2005) Explosive residue detection by laser surface photo-fragmentation–fragment detection spectroscopy: II In Situ and Real-time Monitoring of RDX, HMX, CL20, and TNT, by an Improved ion probe. Report ARL-TR-3478

    Google Scholar 

  49. Larson SL, felt DR, Escalon L, JD Davis, Hansen LD (2001) Analysis of CL-20 in environmental matrices water and soil. ERDC/EL TR-01-21

    Google Scholar 

  50. Liu Y, Chen S, Luo S (2000) HPLC method for analysis of CL-20 in explosive mixture. Huaxue Yanjiu Yu Yingyong 12(4):446–448

    CAS  Google Scholar 

  51. Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan VK, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications Comparison with RDX and HMX. J Chromatogr A 1025(1):125–132. doi:10.1016/jchroma200308060

    Article  CAS  Google Scholar 

  52. Anthony JS, Davis EA, Haley MV, Kolakowski JE, Kurnas CW, Phillips CT, Simini M, Kuperman RG, Checkai RT (2004) HPLC determination of hexanitrohexaazaisowurtzitane (CL 20) in soil and aqueous matrices. US Army Res Dev Eng Command Edgewood chem Bio Center, ECBE-TR, p 403

    Google Scholar 

  53. Makarov A, LoBrutto R, Christodoulatos C, Jerkovich A (2009) The use of ultra high-performance liquid chromatography for studying hydrolysis kinetics of CL-20 and related energetic compounds. J Hazard Mater 162(2–3):1034–1040. doi:10.1016/jjhazmat200805157

    Article  CAS  Google Scholar 

  54. Oehrle SA (1994) Analysis of CL-20 and TNAZ in the presence of other nitroaromatic and nitramine explosives using HPLC with photodiode array (PDA) detection. J Energ Mater 12(4):22–211. doi:10.1080/07370659408018651

    Google Scholar 

  55. Persson B, Ostmark H, Bergman H (1997) An HPLC method for analysis of HNIW and TNAZ in an explosive mixture. Propellants, Explos, Pyrotech 22(4):238–239

    Article  CAS  Google Scholar 

  56. Agilent Technology, LC/MS Application Note, April 2004

    Google Scholar 

  57. Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Prediction of physicochemical properties of energetic materials. Fluid Phase Equilib 264:86–92

    Article  CAS  Google Scholar 

  58. Qasim MM, Furey J, Fredrickson HL, Szecsody J, McGrath C, Bajpai R (2004) Semiempirical predictions of chemical degradation reaction mechanisms of CL-20 as related to molecular structure. Struct Chem 15(5):493–499. doi:10.1023/B:STUC000003790727898f5

    Article  CAS  Google Scholar 

  59. Zeman S, Jalovy Z (2000) Heats of fusion of polynitro derivatives of polyazaisowurtzitane. Thermochim Acta 345(1):31–38

    Article  CAS  Google Scholar 

  60. Jenkins TF, Bartolini C, Ranney TA (2003) Stability of CL-20,TNAZ, HMX, RDX,NG, and PETN in moist, unsaturated soil. ERDC/CRREL TR-03-7

    Google Scholar 

  61. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffmann DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants, Explos, Pyrotech 22(5):249–255

    Article  CAS  Google Scholar 

  62. Greenlief CM, Ghosh TK, Viswanath DS, Boddu VM (2010) Vapor Pressure of Hexanitrohexaazaisowurtzitane (HNIW, CL-20). Report to Leonard Wood Institute, LWI-101.1, MO, USA

    Google Scholar 

  63. Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV, Milekhin YM, Gusev SA, Matveev AA (2003) Combustion characteristics of the high-energy cage hexanitrohexaazaisowurtzitane nitramine. Khim Fiz 22(7):69–74

    CAS  Google Scholar 

  64. Boddu VM, Maloney SW, Toghiani RK, Toghiani H (2010) Prediction of physicochemical properties of energetic materials for identification of treatment technologies for waste streams. U.S. Army Engineer Research and Development Center, ERDC/CERL TR-10-27

    Google Scholar 

  65. Osmont A, Catoire L, Gökalp I, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151:262–273

    Article  CAS  Google Scholar 

  66. Karakaya P, Sidhoum M, Christodoulatos C, Nicolich S, Balas W (2005) Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20). J Hazard Mater 120(1–3):183–191

    Article  CAS  Google Scholar 

  67. von Holtz E, Ornellas D, Foltz MF, Clarkson JE (1994) The solubility of ε-CL-20 in selected materials. Propellants, Explos, Pyrotech 19:206–212

    Article  Google Scholar 

  68. Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG (2005) Thermal study of HNIW (CL-20). Thermochim Acta 433(1–2):105–115

    Article  CAS  Google Scholar 

  69. Highsmith T, Johnston H (2004) Continuous process for preparing alkoxynitroarenes. ALLIANT TECHSYSTEMS INC., MINNESOTA, US 10/338,767, USA

    Google Scholar 

  70. Korsounskii BL, Nedel’ko VV, Chuk anov NV, Larikova TS, Volk F (2000) Kinetics of thermal decomposition of hexanitrohexaazaisowurzitane, Russ Chem Bull 49:812–817

    Google Scholar 

  71. Ding T, Yang H, Zhang Y (2013) Thermal decomposition of CL-20/RDX mixed system. Huaxue Tuijinji Yu Gaofenzi Cailiao 11(6):84–86

    CAS  Google Scholar 

  72. Bohn MA (2002) Kinetic description of mass loss data for the assessment of stability, compatibility and aging of energetic components and formulations exemplified with ε-CL20. Propellants, Explos, Pyrotech 27(3):125–135

    Article  CAS  Google Scholar 

  73. Qasim MM, Moore B, Taylor L, Honea P, Gorb L, Leszczynski J (2007) Structural characteristics and reactivity relationships of nitroaromatic and nitramine explosives—a review of our computational chemistry and spectroscopic research. Int J Mol Sci 8:1234–1264

    Article  CAS  Google Scholar 

  74. Pavlov J, Christodoulatos C, Sidhoum M, Nicolich S, Balas W, Koutsospyros A (2007) Hydrolysis of hexanitrohexaazaisowurtzitane (CL-20). J Energ Mater 25(1):1–18

    Google Scholar 

  75. Santiago L, Felt DR, Davis JL (2007) Chemical remediation of an ordnance-related compound: thealkaline hydrolysis of CL-20. ERDC/El TR-07-18 Report

    Google Scholar 

  76. Naik NH, Gore GM, Gandhe BR, Sikder AK (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). J Hazard Mater 159(2–3):5–630

    Google Scholar 

  77. Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive CL-20. Appl Environ Microbiol 69(3):1871–1874

    Article  CAS  Google Scholar 

  78. Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73(2):274–290; Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi Chemosphere 63(1):175–181

    Google Scholar 

  79. Balakrishnan VK, Monteil-Rivera F, Gautier MA, Hawari J (2004) Sorption and stability of the polycyclic nitramine explosive CL-20 in soil. J Environ Qual 33(4):1362–1368

    Article  CAS  Google Scholar 

  80. Balakrishnan VK, Monteil-Rivera F, Halasz A, Corbeanu A, Hawari J (2004) Decomposition of the Polycyclic Nitramine Explosive, CL-20, by Fe0. Environ Sci Technol 38(24):6861–6866

    Article  CAS  Google Scholar 

  81. Bhushan B, Paquet L, Spain JC, Hawari J (2003) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp strain FA1. Appl Environ Microbiol 69(9):5216–5221

    Article  CAS  Google Scholar 

  82. Kholod Y, Okovytyy S, Kuramshina G, Qasim M, Gorb L, Leszczynski J (2007) An analysis of stable forms of CL-20: a DFT study of conformational transitions, infrared and Raman spectra. J Mol Struct 843(1–3):14–25

    Article  CAS  Google Scholar 

  83. Qasim M, Fredrickson H, Honea P, Furey J, Leszcznski J, Okovytyy S, Szecsody J, Kholod Y (2005) Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction. SAR QSAR Environ Res 16:495–515

    Article  CAS  Google Scholar 

  84. Foltz MF (1994) Thermal stability of ε-hexanitrohexaazaisowurtzitane in an Estane formulation. Propellants, Explos, Pyrotech 19(2):63–69

    Article  CAS  Google Scholar 

  85. Goede P, Latypov NV, Oestmark H (2004) Fourier transform Raman Spectroscopy of the four crystallographic phases of α, β, γ and ε 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[55005,903,11]dodecane (HNIW, CL-20). Propellants, Explos, Pyrotech 29(4):205–208

    Article  CAS  Google Scholar 

  86. Ulrich TF (2005) Energetic materials: particle processing and characterization. Wiley, New York

    Google Scholar 

  87. Nair UR, Gore GM, Sivabalan R, Satpute RS, Asthana SN, Singh H (2004) Studies on polymer coated CL-20-the most powerful explosive J Polym Mater 21(4):377–382

    Google Scholar 

  88. Nair UR, Sivabalan R, Gore GM, Dudek K, Marecek P, Vavra P (2000) Laboratory testing of HNIW mixtures. Proc. 31st Int Conf ICT, Karlsruhe, June 27–30 (2000), pp 110/1–110/6

    Google Scholar 

  89. Mezger MJ, Nicholich SM, Geiss DA et al (1999) Performance and hazard characterzation of CL-20 formulations. In: Proceedings of 30th International Annual Conference of ICT, Karlsruhe, June 29–July 2 (1999), pp. 4/1–4/14

    Google Scholar 

  90. Tian Y, Xu R, Zhou Y, Nie F (2001) Study on formulation of CL-20. In: Procecings of 4th International Autumn Seminar on Propellants, Explos, Pyrotech Shaoxing, China, pp 43–47

    Google Scholar 

  91. Golfier M, Graindorge H, Longevialle Y, Mace H (1998) New energetic molecules and their applications in the energetic materials. In: Proceedings of 29th International Annual Conf. of ICT, Karlsruhe, 30 June–3 July 1998, pp 3/1–3/17

    Google Scholar 

  92. Li J, Brill TB (2006) Nanostructured energetic composites of CL-20 and binders synthesized by sol gel methods. Propellants, Explos, Pyrotech 31:61–69

    Article  CAS  Google Scholar 

  93. Wagstaff DC (2002) Desensitization of energetic materialsby energetic plasticizer, Brit. UK Pat. Appl GB 2374867 A1, 30 October 2002

    Google Scholar 

  94. Mueller D (1999) New gun propellant with CL-20. Propellants, Explos, Pyrotech 24(3):176–181. doi:10.1002/(SICI)1521-4087(199906)24:03<176:AID-PREP176>30CO;2-4

    Article  CAS  Google Scholar 

  95. Weiser V, Eisenreich N, Eckl W, Eisele S, Menke K (2000) Burning behavior of CL-20/GAP and HMX/GAP rocket propellants. In: International Annual Conference on ICT 31st (Energetic Materials), pp 144/141–144/146

    Google Scholar 

  96. Nair UR, Gore GM, Sivabalan R, Divekar CN, Asthana SN, Singh H (2004) Studies on advanced CL-20-based composite modified double-base propellants. J Propul Power 20(5):952–955; Thepenier J, Fanblanc G (2001) Acta Austronautica, 38:245

    Google Scholar 

  97. Thepenier J, Fanblanc G (2001) Advanced technologies available for future solid propellant grains. Acta Austronautica 48(5–12):245–255

    Article  CAS  Google Scholar 

  98. Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Kumas CW, Davis EA (2006) U S Army Research, Development and Engineering., ECBC-TR-485

    Google Scholar 

  99. Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Davis EA (2006) Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere 62(8):1282–1293

    Article  CAS  Google Scholar 

Additional Scholarly Articles for Further Reading

  1. Agrawal JP, Walley SM, Field JE (1998) A high-speed photographic study of the impact initiation of hexanitro-hexaaza-isowurtzitane and nitrotriazolone. Combust Flame 112(1/2):62–72. doi:10.1016/S0010-2180(97)81757-9

    Article  CAS  Google Scholar 

  2. Aldoshin SM, Aliev ZG, Goncharov TK (2014) Crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane solvate with ε-caprolactam. J Struct Chem 55(4):709–712. doi:10.1134/S0022476614040179

    Article  CAS  Google Scholar 

  3. Aldoshin SM, Aliev ZG, Goncharov TK, Korchagin DV, Milekhin YM, Shishov NI (2011) New conformer of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). Crystal and molecular structures of the CL-20 solvate with glyceryl triacetate. Russ Chem Bull 60(7):1394–1400. doi:10.1007/s11172-011-0209-5

  4. Aldoshin SM et al (2014) Crystal structure of cocrystals 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05.9.03.11]dodecane with 7H-tris-1,2,5-oxadiazolo(3,4-b:3′,4′-d:3″,4″-f)azepine. J Struct Chem 55(2):327–331. doi:10.1134/S0022476614020206

    Article  CAS  Google Scholar 

  5. Alnemrat S, Hooper JP (2013) Predicting temperature-dependent solid vapor pressures of explosives and related compounds using a quantum mechanical continuum solvation model. J Phys Chem A 117(9):2035–2043. doi:10.1021/jp400164j

    Article  CAS  Google Scholar 

  6. Alnemrat S, Hooper JP (2014) Predicting solubility of military, homemade, and green explosives in pure and saline water using COSMO-RS. Propellants, Explos, Pyrotech 39(1):79–89. doi:10.1002/prep.201300071

    Article  CAS  Google Scholar 

  7. Ammon HL (2008) Updated atom/functional group and atom_code volume additivity parameters for the calculation of crystal densities of single molecules, organic salts, and multi-fragment materials containing H, C, B, N, O, F, S, P, Cl, Br, and I. Propellants, Explos, Pyrotech 33(2):92–102. doi:10.1002/prep.200700054

    Article  CAS  Google Scholar 

  8. Amwele HR, Papirom P, Chukanhom K, Beamish FHW, Petkam R (2015) Acute and subchronic toxicity of metal complex azo acid dye and anionic surfactant oil on fish Oreochromis niloticus. J Environ Biol 36(1):199–205, 7p

    Google Scholar 

  9. Andelkovic-Lukic M (2000) New high explosive—polycyclic nitramine hexanitrohexaazaisowurtzitane (HNIW, CL-20). Naucno-Teh Pregl 50(6):60–64

    CAS  Google Scholar 

  10. Anderson SR, am Ende DJ, Salan JS, Samuels P (2014) Preparation of an energetic-energetic cocrystal using resonant acoustic mixing. Propellants, Explos, Pyrotech 39(5):637–640 doi:10.1002/prep.201400092

  11. Atwood AI et al (1999) Burning rate of solid propellant ingredients, part 1: pressure and initial temperature effects. J Propul Power 15(6):740–747. doi:10.2514/2.5522

    Article  CAS  Google Scholar 

  12. Paromov AE, Sysolyatin SV, Gatilov YV (2016) An acid-catalyzed cascade synthesis of oxaazatetracyclo [5.5.0.03,11.05,9]dodecane derivatives. J Energ Mater. doi:10.1080/07370652.2016.1194499

  13. Atwood AI et al (1999) Burning rate of solid propellant ingredients, part 2: determination of burning rate temperature sensitivity. J Propul Power 15(6):748–752. doi:10.2514/2.5523

    Article  CAS  Google Scholar 

  14. Aubuchon CM, Rector KD, Holmes W, Fayer MD (1999) Nitro group asymmetric stretching mode lifetimes of molecules used in energetic materials. Chem Phys Lett 299(1):84–90. doi:10.1016/S0009-2614(98)01241-X

    Article  CAS  Google Scholar 

  15. Balakrishnan VK, Halasz A, Hawari J (2003) Alkaline Hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol 37(9):1838–1843. doi:10.1021/es020959h

    Article  CAS  Google Scholar 

  16. Balakrishnan VK, Monteil-Rivera F, Gautier MA, Hawari J (2004) Sorption and stability of the polycyclic nitramine explosive CL-20 in soil. J Environ Qual 33(4):1362–1368. doi:10.2134/jeq2004.1362

    Article  CAS  Google Scholar 

  17. Balakrishnan VK, Monteil-Rivera F, Halasz A, Corbeanu A, Hawari J (2004) Decomposition of the polycyclic nitramine explosive, CL-20, by FeO. Environ Sci Technol 38(24):6861–6866. doi:10.1021/es049423h

    Article  CAS  Google Scholar 

  18. Bardai G, Sunahara GI, Spear PA, Martel M, Gong P, Hawari J (2005) Effects of dietary administration of CL-20 on Japanese Quail Coturnix coturnix japonica. Arch Environ Contam Toxicol 49(2):215–222. doi:10.1007/s00244-004-0231-9

    Article  CAS  Google Scholar 

  19. Bardai GK et al (2006) In vitro degradation of hexanitrohexaazaisowurtzitane (CL-20) by cytosolic enzymes of Japanese quail and the rabbit. Environ Toxicol Chem 25(12):3221–3229. doi:10.1897/06-068R.1

    Article  CAS  Google Scholar 

  20. Bayat Y et al (2013) Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane using Melaminium-tris(hydrogensulfate) by a Simple One-pot Nitration Procedure. Propellants, Explos, Pyrotech 38(6):745–747. doi:10.1002/prep.201300034

    Article  CAS  Google Scholar 

  21. Bayat Y, Mokhtari J, Farhadian N, Bayat M (2012) Heteropolyacids: an efficient catalyst for synthesis of CL-20. J Energ Mater 30(2):124–134. doi:10.1080/07370652.2010.549539

    Article  CAS  Google Scholar 

  22. Bayat Y, Pourmortazavi SM, Ahadi H, Iravani H (2013) Taguchi robust design to optimize supercritical carbon dioxide anti-solvent process for preparation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanoparticles. Chem Eng J 230:432–438 doi:10.1016/j.cej.2013.06.100

  23. Bayat Y, Soleyman R, Zarandi M (2015) Synthesis and characterization of novel 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo dodecane based nanopolymer-bonded explosives by microemulsion. J Mol Liq 206:190–194. doi:10.1016/j.molliq.2015.02.019

    Article  CAS  Google Scholar 

  24. Bazaki H, Kawabe S, Miya H, Kodama T (1998) Synthesis and sensitivity of hexanitrohexaaza-isowurtzitane (HNIW). Propellants, Explos, Pyrotech 23(6):333–336. doi:10.1002/(SICI)1521-4087(199812)23:6<333:AID-PREP333>3.0.CO;2-X

    Article  CAS  Google Scholar 

  25. Behler KD, Pesce-Rodriguez R, Cabalo J, Sausa R (2013) Infrared spectroscopy and density functional theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations. Spectrochim Acta, Part A 114:708–712. doi:10.1016/j.saa.2013.05.075

    Article  CAS  Google Scholar 

  26. Behrens R (2005) Thermal decomposition processes of energetic materials in the condensed phase at low and moderate temperatures. Adv Ser Phys Chem 16(Overviews of Recent Research on Energetic Materials):29–73

    Google Scholar 

  27. Bhushan B, Halasz A, Hawari J (2004) Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Commun 322(1):271–276. doi:10.1016/j.bbrc.2004.07.115

    Article  CAS  Google Scholar 

  28. Bhushan B, Halasz A, Spain JC, Hawari J (2004) Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol 70(7):4040–4047. doi:10.1128/AEM.70.7.4040-4047.2004

    Article  CAS  Google Scholar 

  29. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316(3):816–821. doi:10.1016/j.bbrc.2004.02.120

    Article  CAS  Google Scholar 

  30. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: A 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12(9):4311–4314. doi:10.1021/cg3010882

    Article  CAS  Google Scholar 

  31. Bonin PML, Bejan D, Radovic-Hrapovic Z, Halasz A, Hawari J, Bunce NJ (2005) Indirect oxidation of RDX, HMX, and CL-20 cyclic nitramines in aqueous solution at boron-doped diamond electrodes. Environ Chem 2(2):125–129. doi:10.1071/EN05006

    Article  CAS  Google Scholar 

  32. Boudreau AE, Hoatson DM (2004) Halogen variations in the paleoproterozoic layered mafic-ultramafic intrusions of East Kimberley, Western Australia: implications for platinum group element mineralization. Econ Geol 99(5):1015–1026

    Article  CAS  Google Scholar 

  33. Bresler PI (1966) Gas analyzer for determination of chlorine concentrations in gas mixtures. Zavod Lab 32(6):7–766

    Google Scholar 

  34. Bunte G, Pontius H, Kaiser M (1999) Analytical characterization of impurities or byproducts in new energetic materials. Propellants, Explos, Pyrotech 24(3):149–155. doi:10.1002/(SICI)1521-4087(199906)24:03<149:AID-PREP149>3.0.CO;2-4

    Article  CAS  Google Scholar 

  35. Byrd EFC, Chabalowski CF, Rice BM (2007) An Ab initio study of nitromethane, HMX, RDX, CL-20, PETN, and TATB. Science Press, pp 696–700

    Google Scholar 

  36. Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    Article  CAS  Google Scholar 

  37. Byrd EFC, Rice BM (2007) Ab initio study of compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and pentaerythritol tetranitrate (PETN). J Phys Chem C 111(6):2787–2796. doi:10.1021/jp0617930

    Article  CAS  Google Scholar 

  38. Bywater WG, Coleman WR, Kamm O, Merritt HH (1945) Synthetic anticonvulsants. Preparation and properties of some benzoxazoles. J Am Chem Soc 67:7–905. doi:10.1021/ja01222a008

    Article  Google Scholar 

  39. Campbell JA, Szecsody JE, Devary BJ, Valenzuela BR (2007) Electrospray ionization mass spectrometry of hexanitrohexaazaisowurtzitane (CL-20). Anal Lett 40(10):1972–1978. doi:10.1080/00032710701484459

    Article  CAS  Google Scholar 

  40. Chambers RD, Musgrave WKR, Urben PG (1975) Chlorination of perfluorodiazines. J Fluorine Chem 5(3):6–275. doi:10.1016/S0022-1139(00)82489-6

    Article  Google Scholar 

  41. Chan RKS, Anselmo KJ, Reynolds CE, Worman CH (1978) Diffusion of vinyl chloride from PVC packaging material into food simulating solvents. Polym Eng Sci 18(7):6–601. doi:10.1002/pen.760180709

    Article  Google Scholar 

  42. Chang C-L, Lee J-S, Hsu C-K, Shieh B (2001) Thermal decomposition properties of CL-20 and NTO. Proc NATAS Annu Conf Therm Anal Appl 29th:685–690

    Google Scholar 

  43. Chapman RD, Hollins RA (2008) Benzylamine-Free, heavy-metal-free synthesis of CL-20 via hexa(1-propenyl)hexaazaisowurtzitane. J Energ Mater 26(4):246–273. doi:10.1080/07370650802182385

    Article  CAS  Google Scholar 

  44. Chernyshev EA, Mironov VF, Petrov AD (1960) New method of preparation of organosilicon monomers by high temperature condensation of alkenyl chlorides, aryl chlorides, and olefins with hydrosilanes. Izv Akad Nauk SSSR, Ser Khim:2147–2156

    Google Scholar 

  45. Chung K-H, Kil H-S, Choi I-Y, Chu C-K, Lee I-M (2000) New precursors for hexanitrohexaazaisowurtzitane (HNIW, CL-20). J Heterocycl Chem 37(6):1647–1649. doi:10.1002/jhet.5570370640

    Article  CAS  Google Scholar 

  46. Clawson JS, Anderson KL, Pugmire RJ, Grant DM (2004) 15 N NMR Chemical Shift Tensors of Substituted Hexaazaisowurtzitanes: The Intermediates in the Synthesis of CL-20. J Phys Chem A 108(14):2638–2644. doi:10.1021/jp0373999

    Article  CAS  Google Scholar 

  47. Collet C, Dervaux M, Werschine M (2011) B2514A: a novel enhanced blast explosive. Proc Int Pyrotech Semin 37th(EUROPYRO 2011):72–84

    Google Scholar 

  48. Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73(2):274–290. doi:10.1007/s00253-006-0588-y

    Article  CAS  Google Scholar 

  49. Crocker FH, Thompson KT, Szecsody JE, Fredrickson HL (2005) Biotic and abiotic degradation of CL-20 and RDX in soils. J Environ Qual 34(6):2208–2216. doi:10.2134/jeq2005.0032

    Article  CAS  Google Scholar 

  50. DeTata D, Collins P, McKinley A (2013) A fast liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) method for the identification of organic explosives and propellants. Forensic Sci Int 233(1–3):63–74. doi:10.1016/j.forsciint.2013.08.007

    Article  CAS  Google Scholar 

  51. Divekar CN, Sanghavi RR, Nair UR, Chakraborthy TK, Sikder AK, Singh A (2010) Closed-vessel and thermal studies on triple-base gun propellants containing CL-20. J Propul Power 26(1):120–124. doi:10.2514/1.40895

    Article  CAS  Google Scholar 

  52. Doriath G (1995) Energetic insensitive propellants for solid and ducted rockets. J Propul Power 11(4):82–870. doi:10.2514/3.23912

    Article  Google Scholar 

  53. Dorofeeva OV, Suntsova MA (2015) Enthalpy of formation of CL-20. Comput Theor Chem 1057:54–59. doi:10.1016/j.comptc.2015.01.015

    Article  CAS  Google Scholar 

  54. Dubovik AV, Kozak GD, Aleshkina EA (2007) Theoretical estimation of explosion hazard of NTO, FOX-7, TNAZ, and CL-20. University of Pardubice, pp 484–495

    Google Scholar 

  55. Dumas S, Gauvrit JY, Lanteri P (2012) Determining the polymorphic purity of ε-CL20 contaminated by other polymorphs through the use of FTIR spectroscopy with PLS regression. Propellants, Explos, Pyrotech 37(2):230–234. doi:10.1002/prep.200900090

    Article  CAS  Google Scholar 

  56. Dziura R, Kazimierczuk R, Skupinski W, Pienkowski L, Grzelczyk S (2003) Reductive debenzylation in synthesis of hexanitrohexaazaisowurtzitane (HNIW, CL-20). Organika:31–43

    Google Scholar 

  57. Elbeih A, Zeman S, Jungova M, Vavra P (2013) Attractive nitramines and related PBXs. Propellants, Explos, Pyrotech 38(3):379–385. doi:10.1002/prep.201200011

    Article  CAS  Google Scholar 

  58. Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi. Chemosphere 63(1):175–181. doi:10.1016/j.chemosphere.2005.06.052

    Article  CAS  Google Scholar 

  59. Gar KA (1958) Field trials of 65% chlorten. Org Insektofungitsidy i Gerbitsidy:208–230

    Google Scholar 

  60. Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: The most powerful high energy material. J Therm Anal Calorim 73(3):913–922

    Article  CAS  Google Scholar 

  61. Ghosh M et al (2014) Probing crystal growth of ε- and α-CL-20 polymorphs via metastable phase transition using microscopy and vibrational spectroscopy. Cryst Growth Des 14(10):5053–5063. doi:10.1021/cg500644w

    Article  CAS  Google Scholar 

  62. Ghule VD, Jadhav PM, Patil RS, Radhakrishnan S, Soman T (2010) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114(1):498–503. doi:10.1021/jp9071839

    Article  CAS  Google Scholar 

  63. Gnirke AU, Weidle UH (1998) Investigation of prevalence and regulation of expression of progression associated protein (PAP). Anticancer Res 18(6A):4363–4369

    CAS  Google Scholar 

  64. Gnirke AU, Weidle UH (1998) Investigation of prevalence and regulation of expression of progression associated protein (PAP). Anticancer Res 18(6A):4363–4369

    CAS  Google Scholar 

  65. Goede P, Latypov NV, Oestmark H (2004) Fourier transform Raman Spectroscopy of the four crystallographic phases of α, β, γ and ε 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HNIW, CL-20). Propellants, Explos, Pyrotech 29(4):205–208 doi:10.1002/prep.200400047

  66. Golofit T, Zysk K (2015) Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO. J Therm Anal Calorim 119(3):1931–1939. doi:10.1007/s10973-015-4418-2

    Article  CAS  Google Scholar 

  67. Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56(7):653–658. doi:10.1016/j.chemosphere.2004.04.010

    Article  CAS  Google Scholar 

  68. Granito C, Schultz HP (1963) Decarboxylation studies. II. Preparation of alkyl phenyl ketones. J Org Chem 28:81–879. doi:10.1021/jo01038a521

    Article  Google Scholar 

  69. Greenberg BL, Kalyon DM, Erol M, Mezger M, Lee K, Lusk S (2003) Analysis of slurry-coating effectiveness of CL-20 using grazing incidence x-ray diffraction. J Energ Mater 21(3):185–199. doi:10.1080/716100383

    Article  CAS  Google Scholar 

  70. Groom CA, Halasz A, Paquet L, D’Cruz P, Hawari J (2003) Cyclodextrin-assisted capillary electrophoresis for determination of the cyclic nitramine explosives RDX, HMX and CL-20. Comparison with high-performance liquid chromatography. J Chromatogr, A 999(1–2):17–22 doi:10.1016/S0021-9673(03)00389-3

  71. Hakansson K, Coorey RV, Zubarev RA, Talrose VL, Hakansson P (2000) Low-mass ions observed in plasma desorption mass spectrometry of high explosives. J Mass Spectrom 35(3):337–346

    Article  CAS  Google Scholar 

  72. Hawari J, Deschamps S, Beaulieu C, Paquet L, Halasz A (2004) Photodegradation of CL-20: insights into the mechanisms of initial reactions and environmental fate. Water Res 38(19):4055–4064. doi:10.1016/j.watres.2004.06.032

    Article  CAS  Google Scholar 

  73. Hoffmann RW, Sieber W, Guhn G (1965) Decomposition of 1,2,3-benzothiadiazole 1,1-dioxide. Chem Ber 98(11):8–3470

    Article  Google Scholar 

  74. Hultquist ME et al (1951) N-Heterocyclic benzenesulfonamides. J Am Chem Soc 73:66–2558. doi:10.1021/ja01150a042

    Google Scholar 

  75. Isayev O, Gorb L, Qasim M, Leszczynski J (2008) Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20. J Phys Chem B 112(35):11005–11013. doi:10.1021/jp804765m

    Article  CAS  Google Scholar 

  76. Kaste PJ, Rice BM (2004) Novel energetic materials for the future force: the army pursues the next generation of propellants and explosives. AMPTIAC Q 8(4):85–89

    CAS  Google Scholar 

  77. Keshavarz MH, Yousefi MH (2008) Heats of sublimation of nitramines based on simple parameters. J Hazard Mater 152(3):929–933. doi:10.1016/j.jhazmat.2007.07.067

    Article  CAS  Google Scholar 

  78. Kholod Y et al (2006) Are 1,5- and 1,7-dihydrodiimidazo[4,5-b:4’,5’-e]pyrazine the main products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) alkaline hydrolysis? A DFT study of vibrational spectra. J Mol Struct 794(1–3):288–302. doi:10.1016/j.molstruc.2006.02.061

    Article  CAS  Google Scholar 

  79. Kholod Y, Kosenkov D, Okovytyy S, Gorb L, Qasim M, Leszczynski J (2008) CL-20 photodecomposition: Ab initio foundations for identification of products. Spectrochim Acta, Part A 71A(1):230–237. doi:10.1016/j.saa.2007.12.021

    Article  CAS  Google Scholar 

  80. Kim J-H, Park Y-C, Yim Y-J, Han J-S (1998) Crystallization behavior of hexanitrohexaazaisowurtzitane at 298 K and quantitative analysis of mixtures of its polymorphs by FTIR. J Chem Eng Jpn 31(3):478–481. doi:10.1252/jcej.31.478

    Article  CAS  Google Scholar 

  81. Kim J-H, Park Y-C, Yim Y-J, Han J-S (1998) Crystallization behavior of hexanitrohexaazaisowurtzitane at 298 K and quantitative analysis of mixtures of its polymorphs by FTIR. J Chem Eng Jpn 31(3):478–481. doi:10.1252/jcej.31.478

    Article  CAS  Google Scholar 

  82. Klapotke TM, Ang H-G (2001) Estimation of the crystalline density of nitramine (N-NO2 based) high energy density materials (HEDM). Propellants, Explos, Pyrotech 26(5):221–224. doi:10.1002/1521-4087(200112)26:5<221:AID-PREP221>3.0.CO;2-T

    Article  CAS  Google Scholar 

  83. Klapötke TM, Witkowski TG (2016) Covalent and Ionic Insensitive High-Explosives. Propellants, Explos, Pyrotech 41:470–483. doi:10.1002/prep.201600006

    Article  CAS  Google Scholar 

  84. Knox-Holmes B (1993) Biofouling control with low levels of copper and chlorine. Biofouling 7(2):66–157. doi:10.1080/08927019309386250

    Article  Google Scholar 

  85. Koslik P, Stas J, Wilk Z, Zakrzewski A (2007) Research of high explosives based on RDX, HMX and CL-20 in the small scale underwater test examination. Cent Eur J Energ Mater 4(3):3–13

    CAS  Google Scholar 

  86. Koutsospyros A, Christodoulatos C, Panikov N, Malcheva O, Karakaya P, Nicolich S (2004) Environmental relevance of CL-20: preliminary findings. Water Air Soil Pollut Focus 4(4–5):459–470. doi:10.1023/B:WAFO.0000044818.76609.e9

    Article  CAS  Google Scholar 

  87. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19(11):4909–4917. doi:10.1007/s00894-013-1988-4

    Article  CAS  Google Scholar 

  88. Li J, Brill TB (2007) Kinetics of solid polymorphic phase transitions of CL-20. Propellants, Explos, Pyrotech 32(4):326–330. doi:10.1002/prep.200700036

    Article  CAS  Google Scholar 

  89. Lizlovs EA, Bond AP (1975) Effect of low-temperature aging on corrosion resistance of chromium-molybdenum (18Cr-2Mo) titanium-stabilized ferritic stainless steel. J Electrochem Soc 122(5):93–589. doi:10.1149/1.2134271

    Article  Google Scholar 

  90. Maksimowski P, Skupinski W, Szczygielska J (2013) Comparison of the crystals obtained by precipitation of CL-20 with different chemical purity. Propellants, Explos, Pyrotech 38(6):791–797. doi:10.1002/prep.201300064

    Article  CAS  Google Scholar 

  91. Marvin KW, Fujimoto W, Jetten AM (1995) Identification and characterization of a novel squamous cell-associated gene related to PMP22. J Biol Chem 270(48):16–28910. doi:10.1074/jbc.270.48.28910

    Article  Google Scholar 

  92. Mathieu J, Stucki H (2004) Military high explosives. Chimia 58(6):383–389. doi:10.2533/0000942904777677669

    Article  CAS  Google Scholar 

  93. Meents A, Dittrich B, Johnas SKJ, Thome V, Weckert EF (2008) Charge-density studies of energetic materials: CL-20 and FOX-7. Acta Crystallogr Sect B: Struct Sci 64(4):519. doi:10.1107/S0108768108017497

    Article  CAS  Google Scholar 

  94. Millar DIA et al (2012) Crystal engineering of energetic materials: Co-crystals of CL-20. CrystEngComm 14(10):3742–3749. doi:10.1039/c2ce05796d

    Article  CAS  Google Scholar 

  95. Molt RW, Bartlett RJ, Watson T, Bazante AP (2012) Conformers of CL-20 explosive and ab initio refinement using perturbation theory: implications to detonation mechanisms. J Phys Chem A 116(49):12129–12135. doi:10.1021/jp305443h

    Article  CAS  Google Scholar 

  96. Monteil-Rivera F et al (2009) Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation. Environ Pollut 157(1):77–85

    Article  CAS  Google Scholar 

  97. Naik NH, Gore GM, Gandhe BR, Sikder AK (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). J Hazard Mater 159(2–3):630–635. doi:10.1016/j.jhazmat.2008.02.049

    Article  CAS  Google Scholar 

  98. Namasivayam C, Kanagarathinam A (1992) Distillery wastewater treatment using waste iron(3+)/chromium(3+) hydroxide sludge and polymer flocculants. J Environ Sci Health, Part A A 27(7):37–1721

    Google Scholar 

  99. Nedelko VV et al (2000) Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL-20). Propellants, Explos, Pyrotech 25(5):255–259. doi:10.1002/1521-4087(200011)25:5<255:AID-PREP255>3.0.CO;2-8

    Article  CAS  Google Scholar 

  100. Oehrle SA (1996) Analysis of nitramine and nitroaromatic explosives by micellar electrokinetic capillary chromatography (MECC). J Energ Mater 14(1):47–56. doi:10.1080/07370659608216057

    Article  CAS  Google Scholar 

  101. Ogata Y, Kawasaki A, Nakagawa K (1964) Kinetics of the formation of benzoguanamine from dicyandiamide and benzonitrile. Tetrahedron 20(12):61–2755. doi:10.1016/S0040-4020(01)98493-5

    Google Scholar 

  102. Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) The Mechanism of Unimolecular Decomposition of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study. J Phys Chem A 109(12):2964–2970. doi:10.1021/jp045292v

    Article  CAS  Google Scholar 

  103. Patel AR, Oneto JF (1963) Basic 1,3-dioxolanes. J Pharm Sci 52(6):92–588. doi:10.1002/jps.2600520618

    Google Scholar 

  104. Paulin A, Jobson BA, Vukcevic S (1981) Chlorination of alumina-containing materials in fluidized bed. Trav Com Int Etude Bauxites, Alumine Alum 16:70–161

    Google Scholar 

  105. Peralta-Inga Z, Degirmenbasi N, Olgun U, Gocmez H, Kalyon DM (2006) Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: part I, mathematical modeling using molecular dynamics method. J Energ Mater 24(2):69–101. doi:10.1080/07370650600672082

    Article  CAS  Google Scholar 

  106. Pivina T, Korolev V, Khakimov D, Petukhova T, Ivshin V, Lempert D (2012) Computer simulation of decomposition mechanisms for CL-20, hydrazine, and their binary system. Propellants, Explos, Pyrotech 37(4):502–509. doi:10.1002/prep.201100098

    Article  CAS  Google Scholar 

  107. Reeves CC Jr, Miller WD (1978) Nitrate, chloride and dissolved solids, Ogallala aquifer, west Texas. Ground Water 16(3):73–167. doi:10.1111/j.1745-6584.1978.tb03218.x

    Article  Google Scholar 

  108. Robidoux PY et al (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23(4):1026–1034. doi:10.1897/03-308

    Article  CAS  Google Scholar 

  109. Sandor A (1964) Thermionic emission from barium-coated ultrapure nickel in the emission microscope. J Electron Control 17(4):91–377. doi:10.1080/00207216408937712

    Article  Google Scholar 

  110. Sandor A (1964) Thermionic emission from barium-coated ultrapure nickel in the emission microscope. J Electron Control 17(4):91–377. doi:10.1080/00207216408937712

    Article  Google Scholar 

  111. Sausa RC, Cabalo JB (2012) The detection of energetic materials by laser photoacoustic overtone spectroscopy. Appl Spectrosc 66(9):993–998. doi:10.1366/12-06699

    Article  CAS  Google Scholar 

  112. Schefflan R, Kovenklioglu S, Kalyon D, Redner P, Heider E (2006) Mathematical model for a fed-batch crystallization process for energetic crystals to achieve targeted size distributions. J Energ Mater 24(2):157–172. doi:10.1080/07370650600672058

    Article  CAS  Google Scholar 

  113. Sikder AK, Sikder N, Gandhe BR, Agrawal JP, Singh H (2002) Hexanitrohexaazaisowurtzitane or CL-20 in India: synthesis and characterisation. Def Sci J 52(2):135–146

    Article  CAS  Google Scholar 

  114. Sinditskii VP, Burzhava AV, Sheremetev AB, Aleksandrova NS (2012) Thermal and combustion properties of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF). Propellants, Explos, Pyrotech 37(5):575–580. doi:10.1002/prep.201100095

    Article  CAS  Google Scholar 

  115. Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA, Chernyi AN (2012) Combustion mechanism of energetic binders with nitramines. Int J Energ Mater Chem Propul 11(5):427–449. doi:10.1615/IntJEnergeticMaterialsChemProp.2013005557

    CAS  Google Scholar 

  116. Singh H (2005) Current trend of R&D in the field of high energy materials: an overview. Explosion 15(3):120–132

    CAS  Google Scholar 

  117. Sivabalan R, Gore GM, Nair UR, Saikia A, Venugopalan S, Gandhe BR (2007) Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity. J Hazard Mater 139(2):199–203. doi:10.1016/j.jhazmat.2006.06.027

    Article  CAS  Google Scholar 

  118. Souers PC et al (2001) Detonation energies from the cylinder test and CHEETAH V3.0. Propellants, Explos, Pyrotech 26(4):180–190 doi:10.1002/1521-4087(200110)26:4<180::AID-PREP180>3.0.CO;2-K

  119. Steinmetz I, Rott L, Boer C (1966) Enrichment of ground waters with surface waters. Hidrobiologia 7:195–201

    CAS  Google Scholar 

  120. Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2005) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) degradability in soil. Environ Pollut 139(2):353–361. doi:10.1016/j.envpol.2005.05.002

  121. Suzuki J et al (1984) Performance of Shimadzu clinical chemistry analyzer CL-20. Shimadzu Hyoron 41(4):45–229

    Google Scholar 

  122. Szecsody JE, Girvin DC, Devary BJ, Campbell JA (2004) Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments. Chemosphere 56(6):593–610. doi:10.1016/j.chemosphere.2004.04.028

    Article  CAS  Google Scholar 

  123. Talawar MB et al (2006) Effect of organic additives on the mitigation of volatility of 1-nitro-3,3’-dinitroazetidine (TNAZ): Next generation powerful melt castable high energy material. J Hazard Mater 134(1–3):8–18. doi:10.1016/j.jhazmat.2003.10.008

    Article  CAS  Google Scholar 

  124. Talawar MB, Sivabalan R, Polke BG, Nair UR, Gore GM, Asthana SN (2005) Establishment of process technology for the manufacture of dinitrogen pentoxide and its utility for the synthesis of most powerful explosive of today—CL-20. J Hazard Mater 124(1–3):153–164. doi:10.1016/j.jhazmat.2005.04.021

    Article  CAS  Google Scholar 

  125. Tappan AS, Basiliere M, Ball JP, Snedigar S, Fischer GJ, Salton J (2010) Linear actuation using milligram quantities of CL-20 and TAGDNAT. Propellants, Explos, Pyrotech 35(3):207–212. doi:10.1002/prep.201000025

    Article  CAS  Google Scholar 

  126. Tappan BC, Brill TB (2003) Thermal decomposition of energetic materials 86. Cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose. Propellants, Explos, Pyrotech 28(5):223–230 doi:10.1002/prep.200300009

  127. Thiboutot S, Brousseau P, Ampleman G, Pantea D, Cote S (2008) Potential use of CL-20 in TNT/ETPE-based melt cast formulations. Propellants, Explos, Pyrotech 33(2):103–108. doi:10.1002/prep.200700223

    Article  CAS  Google Scholar 

  128. Tian Q et al (2013) Thermally induced damage in hexanitrohexaazaisowurtzitane. Cent Eur J Energ Mater 10(3):359–369

    CAS  Google Scholar 

  129. Tomas-Alonso F, Rubio AM, Alvarez R, Ortuno JA (2013) Dynamic potential response and SEM-EDX studies of polymeric inclusion membranes based on ionic liquids. Int J Electrochem Sci 8(4):4955–4969

    CAS  Google Scholar 

  130. Urbelis JH, Young VG, Swift JA (2015) Using solvent effects to guide the design of a CL-20 cocrystal. CrystEngComm 17(7):1564–1568. doi:10.1039/C4CE02285H

    Article  CAS  Google Scholar 

  131. Van der Heijden AEDM (1998) Crystallization and characterization of energetic materials. Curr Top Cryst Growth Res 4:99–114

    Google Scholar 

  132. van der Heijden AEDM, Bouma RHB, van der Steen AC (2004) Physicochemical parameters of nitramines influencing shock sensitivity. Propellants, Explos, Pyrotech 29(5):304–313. doi:10.1002/prep.200400058

    Article  CAS  Google Scholar 

  133. van der Heijden AEDM, Bouma RHB, van der Steen AC (2004) Physicochemical parameters of nitramines influencing shock sensitivity. Propellants, Explos, Pyrotech 29(5):304–313. doi:10.1002/prep.200400058

    Article  CAS  Google Scholar 

  134. Viswanath DS, Reinig M, Ghosh TK, Boddu VM (2010) Vapor pressure of nitro compounds, vol Pt. 1. University of Pardubice, Institute of Energetic Materials, pp 306–309

    Google Scholar 

  135. Viswanath JV, Venugopal KJ, Rao NVS, Venkataraman A (2016) An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW). Defence Technol 12(5), October 2016, pp 401–418

    Google Scholar 

  136. Volk F, Bathelt H (1997) Influence of energetic materials on the energy-output of gun propellants. Propellants, Explos, Pyrotech 22(3):120–124. doi:10.1002/prep.19970220305

    Article  CAS  Google Scholar 

  137. Volk F, Bathelt H (1995) Influence of energetic materials on the energy-output of gun propellants. Am Defense Preparedness Assoc: 82–89

    Google Scholar 

  138. von Holtz E, Ornellas D, Foltz MF, Clarkson JE (1994) The solubility of ε-CL-20 in selected materials. Propellants, Explos, Pyrotech 19(4):12–206. doi:10.1002/prep.19940190410

    Google Scholar 

  139. Wu Y, Ou Y, Liu Z, Liu J, Meng Z, Chen B (2004) Theoretical studies on the possible conformers and properties of tetranitrodiazidoacetylhexaazaisowurtzitane (TNDAIW). Sci China, Ser B: Chem 47(5):414–419. doi:10.1360/04yb0046

    CAS  Google Scholar 

  140. Xing X et al (2015) Thermal decomposition behavior of hexanitrohexaazaisowurtzitane and its blending with BTATz (expand) and Al by microcalorimetry. J Therm Anal Calorim: Ahead of Print. doi:10.1007/s10973-015-4431-5

  141. Yazici R, Kalyon D (2005) Microstrain and defect analysis of CL-20 crystals by novel x-ray methods. J Energ Mater 23(1):43–58. doi:10.1080/07370650590920287

    Article  CAS  Google Scholar 

  142. Zhang C et al (2014) Evident hydrogen bonded chains building CL-20-based cocrystals. Cryst Growth Des 14(8):3923–3928. doi:10.1021/cg500796r

    Article  CAS  Google Scholar 

  143. Zhang P, Guo X-Y, Zhang J-Y, Jiao Q-J (2014) Application of liquid paraffin in castable CL-20-based PBX. J Energ Mater 32(4):278–292. doi:10.1080/07370652.2013.862318

    Article  CAS  Google Scholar 

  144. Zubarev RA, Hakansson P, Hakansson K, Talrose VL (1998) Matrix assisted particle desorption techniques: use of explosive matrixes. Adv Mass Spectrom 14:B061920/1–B061920/8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabir S. Viswanath .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 US Government (outside the USA)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viswanath, D.S., Ghosh, T.K., Boddu, V.M. (2018). Hexanitrohexaazaisowurtzitane (HNIW, CL-20). In: Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1201-7_2

Download citation

Publish with us

Policies and ethics