Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J, Binder LI (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 113(Pt 21):3737–3745
CAS
PubMed
Google Scholar
Allison SL, Fagan AM, Morris JC, Head D (2016) Spatial navigation in preclinical Alzheimer’s disease. J Alzheimer’s Dis JAD 52:77–90
PubMed
CrossRef
Google Scholar
Alonso AD, Beharry C, Corbo CP, Cohen LS (2016) Molecular mechanism of prion-like tau-induced neurodegeneration. Alzheimer’s Dementia J Alzheimer’s Assoc 12:1090–1097
CrossRef
Google Scholar
Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J (1999) Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett 453:260–264
CAS
PubMed
CrossRef
Google Scholar
Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde [about a peculiar disease of the cerebral cortex]. Allgemeine Zeitschrift fur Psychiatrie und Psychisch-Gerichtlich Medizin 64:146–148
Google Scholar
Alzheimer’s A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimer’s Demen 11:332–384
CrossRef
Google Scholar
Arnsten AF, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298
CAS
PubMed
Google Scholar
Avila J (2006) Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett 580:2922–2927
CAS
PubMed
CrossRef
Google Scholar
Ballard C, Khan Z, Clack H, Corbett A (2011) Nonpharmacological treatment of Alzheimer disease. Can J Psychiatr 56:589–595
CrossRef
Google Scholar
Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC (2016) A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer’s disease. Exp Gerontol 94:103–107
Google Scholar
Bird TD (1993) Early-onset familial Alzheimer disease. In: GeneReviews(R) editors: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH et al. (eds) Seattle (WA)
Google Scholar
Blennow K (2005) CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5:661–672
CAS
PubMed
CrossRef
Google Scholar
Bruckner J, Warren D (2001) Toxic effects of solvents and vapors in Casarett & Doull’s toxicology. The basic science of poisons, 6th edn. Klaassen CD, McGraw-Hill, Kansas, USA, pp 894–895
Google Scholar
Bufill E, Blesa R, Augusti J (2013) Alzheimer’s disease: an evolutionary approach. J Anthropol Sci 91:135–157
PubMed
Google Scholar
Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461–463
CAS
PubMed
CrossRef
Google Scholar
Cai T, Che H, Yao T, Chen Y, Huang C, Zhang W, Du K, Zhang J, Cao Y, Chen J et al (2011) Manganese induces tau hyperphosphorylation through the activation of ERK MAPK pathway in PC12 cells. Toxicol Sci 119:169–177
CAS
PubMed
CrossRef
Google Scholar
Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C et al (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3:89ra57
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chan SF, Sucher NJ (2001) An NMDA receptor signaling complex with protein phosphatase 2A. J Neurosci 21:7985–7992
CAS
PubMed
Google Scholar
Chen XX, Su T (2015) Microcirculation dysfunction in age-related cognitive impairment. Prog Biochem Biophys 42(12):1077–1083
CAS
Google Scholar
Chen YH, Luo JY, Li W, He RQ (1999) Effect of acetaldehyde on phosphorylation of human neuronal tau. J Biochem Mol Biol & Biophys 3:197–202
CAS
Google Scholar
Chen K, Kazachkov M, Yu PH (2007) Effect of aldehydes derived from oxidative deamination and oxidative stress on beta-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Trans (Vienna, Austria: 1996) 114:835–839
Google Scholar
Chen N, Dai LF, Jiang WY, Wu Y (2012a) Pathogenic role of UPR (unfolded protein response) among hereditary Leukoencephalopathy and neurodegenerative disorders after endoplasmic reticulum stress. Prog Biochem Biophys 39:764–770
CAS
CrossRef
Google Scholar
Chen NN, Luo DJ, Yao XQ, Yu C, Wang Y, Wang Q, Wang JZ, Liu GP (2012b) Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats. J Alzheimer’s Dis 30:585–594
CAS
Google Scholar
Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35:607–618
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cui Y, Su T, Zhang SD, Huang P, He YG, Liu Y, Zhang C, Ritch R, He RQ (2016) Elevated urine formaldehyde in elderly patients with primary open angle glaucoma. Int J Ophthalmol 9:411–416
PubMed
PubMed Central
Google Scholar
Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103:2739–2746
CAS
PubMed
CrossRef
Google Scholar
Engelborghs S, De Deyn PP (2001) Biological and genetic markers of sporadic Alzheimer’s disease. Acta Med Okayama 55:55–63
CAS
PubMed
Google Scholar
Evans AM, Fameli N, Ogunbayo OA, Duan J, Navarro-Dorado J (2016) From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Sci China Life Sci 59(8):749–763
CAS
PubMed
CrossRef
Google Scholar
Fu HJ, Rodriguez GA, Herman M, Emrani S, Nahmani E, Barrett G, Figueroa HY, Goldberg E, Hussaini SA, Duff KE (2017) Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron 93(3):533–541
CAS
PubMed
CrossRef
Google Scholar
Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264
CAS
PubMed
CrossRef
Google Scholar
Ghosh A, Giese KP (2015) Calcium/calmodulin-dependent kinase II and Alzheimer’s disease. Mol Brain 8(78). doi:10.1186/s13041-015-0166-2
Goedert M, Wischik CM, Crowther RA et al (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85(11):4051–4055
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 61:921–927
CAS
PubMed
CrossRef
Google Scholar
Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Trans (Vienna, Austria: 1996) 112:813–838
Google Scholar
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089
CAS
PubMed
Google Scholar
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806
CAS
PubMed
CrossRef
Google Scholar
Harrington CR, Mukaetova-Ladinska EB, Hills R et al (1991) Measurement of distinct immunochemical presentations of tau protein in Alzheimer disease. Proc Natl Acad Sci U S A 88(13):5842–5846
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
He R (2016) Abnormal lysosome, formaldehyde Dysmetabolism and age-related cognitive impairment. Prog Biochem Biophys 43(12):1197
Google Scholar
He R, Luo J, Li W (1998) Effect of ethanol on the aggregation of human neuronal tau protein. Protein Pept Lett 5(5):279–285
CAS
Google Scholar
He R, Lu J, Miao JY (2010) Formaldehyde stress. Sci China Life Sci 53(12):1399–1404
CAS
PubMed
CrossRef
Google Scholar
He X, Li Z, Rizak JD, Wu S, Wang Z, He R, Su M, Qin D, Wang J, Hu X (2016) Resveratrol attenuates formaldehyde induced hyperphosphorylation of Tau protein and cytotoxicity in N2a cells. Front Neurosci 10(598). doi:10.3389/fnins.2016.00598
Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59(10):1006–1023
CAS
PubMed
CrossRef
Google Scholar
Hua Q, He RQ (2002) Effect of phosphorylation and aggregation on tau binding to DNA. Protein Pept Lett 9(4):349–357
CAS
PubMed
CrossRef
Google Scholar
Hua Q, He RQ (2003) Tau could protect DNA double helix structure. Biochim Biophys Acta 1645(2):205–211
CAS
PubMed
CrossRef
Google Scholar
Hua Q, He RQ, Haque N, Qu MH, del Carmen Alonso A, Grundke-Iqbal I, Iqbal K (2003) Microtubule associated protein tau binds to double-stranded but not single-stranded DNA. Cell Mol Life Sci CMLS 60(2):413–421
CAS
PubMed
CrossRef
Google Scholar
Huang W, Qiu C, von Strauss E, Winblad B, Fratiglioni L (2004) APOE genotype, family history of dementia, and Alzheimer disease risk: a 6-year follow-up study. Arch Neurol 61(12):1930–1934
PubMed
CrossRef
Google Scholar
Jembrek MJ, Babic M, Pivac N, Hof PR, Simic G (2013) Hyperphosphorylation of tau by gsk-3 beta in alzheimer’s disease: the interaction of a beta and sphingolipid mediators as a therapeutic target. Transl Neurosci 4(4):466–476
CrossRef
Google Scholar
Jian X, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59(8):777–791
CrossRef
CAS
Google Scholar
Kar A, Kuo D, He R, Zhou J, Wu JY (2005) Tau alternative splicing and frontotemporal dementia. Alzheimer Dis Assoc Disord 19(Suppl 1):S29–S36
PubMed
PubMed Central
CrossRef
Google Scholar
Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697(1–2):143–153
CAS
PubMed
CrossRef
Google Scholar
Kilburn KH (1994) Neurobehavioral impairment and seizures from formaldehyde. Arch Environ Health 49(1):37–44
CAS
PubMed
CrossRef
Google Scholar
Kim B, Backus C, Oh S, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150(12):5294–5301
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim DH, Huh JW, Jang M, Suh JH, Kim TW, Park JS, Yoon SY (2012) Sitagliptin increases tau phosphorylation in the hippocampus of rats with type 2 diabetes and in primary neuron cultures. Neurobiol Dis 46(1):52–58
CAS
PubMed
CrossRef
Google Scholar
Kopke E, Tung YC, Shaikh S et al (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384
CAS
PubMed
Google Scholar
Ksiezak-Reding H, Liu WK, Yen SH (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 597(2):209–219
CAS
PubMed
CrossRef
Google Scholar
Li T, Paudel HK (2006) Glycogen synthase kinase 3beta phosphorylates Alzheimer’s disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 45(10):3125–3133
CAS
PubMed
CrossRef
Google Scholar
Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2012) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7):1400–1410
PubMed
CrossRef
CAS
Google Scholar
Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305
CAS
PubMed
Google Scholar
Lithfous S, Dufour A, Despres O (2013) Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res Rev 12(1):201–213
PubMed
CrossRef
Google Scholar
Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, Ramakrishna N, Gong CX (2008) Overexpression of Dyrk1A contributes to neurofibrillary degeneration in down syndrome. FASEB J 22(9):3224–3233
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Liu K, He Y, Yu L, Chen Y, He R (2017) Markedly elevated formaldehyde in the cecum of APP/PS1 mouse. Microbiol China 44(8):1761–1766
Google Scholar
Loomis PA, Howard TH, Castleberry RP, Binder LI (1990) Identification of nuclear tau isoforms in human neuroblastoma cells. Proc Natl Acad Sci U S A 87(21):8422–8426
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lu Z, Li CM, Qiao Y, Yan Y, Yang X (2008) Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air 18(2):77–83
CAS
PubMed
CrossRef
Google Scholar
Lu J, Miao JY, Pan R, He RQ (2011) Formaldehyde-mediated hyperphosphorylation disturbs the interaction between tau protein and DNA. Prog Biochem Biophys 38(12):1113–1120
CAS
CrossRef
Google Scholar
Lu J, Miao J, Su T, Liu Y, He R (2013a) Formaldehyde induces hyperphosphorylation and polymerization of tau protein both in vitro and in vivo. Biochim Biophys Acta 1830(8):4102–4116
CAS
PubMed
CrossRef
Google Scholar
Lu Y, He HJ, Zhou J, Miao JY, Lu J, He YG, Pan R, Wei Y, Liu Y, He RQ (2013b) Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimers Dis 37(3):551–563
PubMed
Google Scholar
Lu J, Li T, He R, Bartlett PF, Gotz J (2014) Visualizing the microtubule-associated protein tau in the nucleus. Sci China Life Sci 57(4):422–431
CAS
PubMed
CrossRef
Google Scholar
Luo J, He R (1999) Effect of acetaldehyde on aggregation of neuronal tau. Protein Pept Lett 6(2):105–110
CAS
Google Scholar
MacAllister SL, Choi J, Dedina L, O’Brien PJ (2011) Metabolic mechanisms of methanol/formaldehyde in isolated rat hepatocytes: carbonyl-metabolizing enzymes versus oxidative stress. Chem Biol Interact 191(1–3):308–314
CAS
PubMed
CrossRef
Google Scholar
Miao J, Lu J, Zhang Z, Tong Z, He R (2013) The effect of formaldehyde on cell cycle is in a concentration-dependent manner. Prog Biochem Biophys 40(7):641–651
CAS
Google Scholar
Michel G, Mercken M, Murayama M, Noguchi K, Ishiguro K, Imahori K, Takashima A (1998) Characterization of tau phosphorylation in glycogen synthase kinase-3beta and cyclin dependent kinase-5 activator (p23) transfected cells. Biochim Biophys Acta 1380(2):177–182
CAS
PubMed
CrossRef
Google Scholar
Monte WC (2012) While science sleeps (SC, USA: Charleston)
Google Scholar
Mudher A, Lovestone S (2002) Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 25(1):22–26
CAS
PubMed
CrossRef
Google Scholar
Nie CL, Wei Y, Chen XY, Liu YY, Dui W, Liu Y, Davies MC, Tendler SJB, He RG (2007) Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One 2(7). doi:10.1371/journal.pone.0000629
Nobutoki T, Ihara T (2015) Early disruption of neurovascular units and microcirculatory dysfunction in the spinal cord in spinal muscular atrophy type I. Med Hypotheses 85(6):842–845
CAS
PubMed
CrossRef
Google Scholar
Oliveira JM, Henriques AG, Martins F, Rebelo S, Silva OABDE (2015) Amyloid-beta modulates both a beta PP and tau phosphorylation. J Alzheimers Dis 45(2):495–507
CAS
PubMed
Google Scholar
Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B, Rosengren L, Vanmechelen E, Blennow K (2005) Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51(2):336–345
CAS
PubMed
CrossRef
Google Scholar
Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622
CAS
PubMed
CrossRef
Google Scholar
Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE et al (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27(50):13635–13648
CAS
PubMed
CrossRef
Google Scholar
Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G (2011) Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 1383(300–6):300–306
CAS
PubMed
CrossRef
Google Scholar
Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The Excitotoxin Quinolinic acid induces tau phosphorylation in human neurons. PLoS One 4(7). doi:10.1371/journal.pone.0006344
Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Drose S, Brandt U et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rizak JD, Ma Y, Hu X (2014) Is formaldehyde the missing link in AD pathology? The differential aggregation of amyloid-beta with APOE isoforms in vitro. Curr Alzheimer Res 11(5):461–468
CAS
PubMed
CrossRef
Google Scholar
Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Anesthesia induces phosphorylation of tau. J Alzheimer’s Dis 16(3):619–626
CAS
CrossRef
Google Scholar
Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6(10). doi:10.1186/1756-6606-6-10
Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870
CAS
PubMed
CrossRef
Google Scholar
Serrano J, Fernandez AP, Martinez-Murillo R, Martinez A (2010) High sensitivity to carcinogens in the brain of a mouse model of Alzheimer’s disease. Oncogene 29(15):2165–2171
CAS
PubMed
CrossRef
Google Scholar
Shcherbakova LN, Tel’pukhov VI, Trenin SO, Bashilov IA, Lapkina TI (1986) Permeability of the blood-brain barrier to intra-arterial formaldehyde. Biull Eksp Biol Med 102(11):573–575
CAS
PubMed
Google Scholar
Shu R, Wong W, Ma QH, Yang ZZ, Zhu H, Liu FJ, Wang P, Ma J, Yan S, Polo JM, et al (2015) APP intracellular domain acts as a transcriptional regulator of miR-663 suppressing neuronal differentiation. Cell Death Dis 19(6). doi:10.1038/cddis.2015.10
Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7(16). doi:10.3389/fnmol.2014.00016
Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739(2–3):280–297
CAS
PubMed
CrossRef
Google Scholar
Su T, Monte WC, Hu X, He Y, He R (2016) Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment. Curr Top Med Chem 16(5):472–484
CAS
PubMed
CrossRef
Google Scholar
Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286(6):4566–4575
CAS
PubMed
CrossRef
Google Scholar
Sun P, Chen JY, Li J, Sun MR, Mo WC, Liu KL, Meng YY, Liu Y, Wang F, He RQ et al (2013) The protective effect of geniposide on human neuroblastoma cells in the presence of formaldehyde. BMC Complement Altern Med 13(152). doi:10.1186/1472-6882-13-152
Tang XQ, Zhuang YY, Zhang P, Fang HR, Zhou CF, Gu HF, Zhang H, Wang CY (2013) Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J Mol Neurosci 49(1):140–149
CAS
PubMed
CrossRef
Google Scholar
Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, Luo H, Lu J, Zhou J, Wan Y et al (2011) Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 32(1):31–41
CAS
PubMed
CrossRef
Google Scholar
Tong Z, Han C, Luo W, Li H, Luo H, Qiang M, Su T, Wu B, Liu Y, Yang X et al (2013) Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep 3(1807). doi:10.1038/srep01807
Tong Z, Han C, Qiang M, Wang W, Lv J, Zhang S, Luo W, Li H, Luo H, Zhou J et al (2015) Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiol Aging 36(1):100–110
CAS
PubMed
CrossRef
Google Scholar
Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423
CAS
PubMed
CrossRef
Google Scholar
Tsuji S (2010) Genetics of neurodegenerative diseases: insights from high-throughput resequencing. Hum Mol Genet 19(R1):R65–R70
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wallin A, Nordlund A, Jonsson M, Blennow K, Zetterberg H, Ohrfelt A, Stalhammar J, Eckerstrom M, Carlsson M, Olsson E et al (2016a) Alzheimer’s disease--subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies. J Cereb Blood Flow Metab 36(1):95–113
PubMed
PubMed Central
CrossRef
Google Scholar
Wallin A, Nordlund A, Jonsson M, Lind K, Edman A, Gothlin M, Stalhammar J, Eckerstrom M, Kern S, Borjesson-Hanson A, Carlsson M, Olsson E, Zetterberg H, Blennow K, Svensson J, Öhrfelt A, Bjerke M, Rolstad S, Eckerström C (2016b) The Gothenburg MCI study: design and distribution of Alzheimer’s disease and subcortical vascular disease diagnoses from baseline to 6-year follow-up. J Cereb Blood Flow Metab 36(1):114–131
PubMed
PubMed Central
CrossRef
Google Scholar
Wang Y, Loomis PA, Zinkowski RP, Binder LI (1993) A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol 121(2):257–267
CAS
PubMed
CrossRef
Google Scholar
Wang JH, Rizak JD, Chen YM, Li L, Hu XT, Ma YY (2013a) Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys. Neurosci Bull 29(1):37–46
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013b) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimer’s Dis 33(Suppl 1):S123–S139
Google Scholar
Wang J, Zhou J, Mo W, He Y, Wei Y, He R, Yi F (2017) Pathological level of formaldehyde decreases cell viability and adhesive morphology in murine neuroblastoma cells. Prog Biochem Biophys 44(7):601–614
Google Scholar
Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Whittington RA, Virag L, Marcouiller F, Papon MA, El Khoury NB, Julien C, Morin F, Emala CW, Planel E (2011) Propofol directly increases tau phosphorylation. PLoS One 6(1):e16648. doi:10.1371/journal.pone.0016648
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu L, Rosa-Neto P, Hsiung GY, Sadovnick AD, Masellis M, Black SE, Jia J, Gauthier S (2012) Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci Le journal canadien des sciences neurologiques 39(4):436–445
CrossRef
Google Scholar
Wu B, Wei Y, Wang Y, Su T, Zhou L, Liu Y, He R (2015) Gavage of D-Ribose induces Abeta-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 6(33):34128–34142
PubMed
PubMed Central
Google Scholar
Yanagisawa M, Planel E, Ishiguro K, Fujita SC (1999) Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer’s disease. FEBS Lett 461(3):329–333
CAS
PubMed
CrossRef
Google Scholar
Yang M, Lu J, Miao J, Rizak J, Yang J, Zhai R, Zhou J, Qu J, Wang J, Yang S et al (2014a) Alzheimer’s disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. J Alzheimer’s Dis JAD 41(4):1117–1129
PubMed
Google Scholar
Yang M, Miao J, Rizak J, Zhai R, Wang Z, Huma T, Li T, Zheng N, Wu S, Zheng Y et al (2014b) Alzheimer’s disease and methanol toxicity (part 2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. J Alzheimer’s Dis 41(4):1131–1147
CAS
Google Scholar
Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, Kim J, Eimer WA, Estus S, Rebeck GW et al (2012) APOE4-specific changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 287(50):41774–41786
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yu PH (2001) Involvement of cerebrovascular semicarbazide-sensitive amine oxidase in the pathogenesis of Alzheimer’s disease and vascular dementia. Med Hypotheses 57(2):175–179
CAS
PubMed
CrossRef
Google Scholar
Yu J, Su T, Zhou T, He Y, Lu J, Li J, He R (2014) Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults. Neurosci Bull 30(2):172–184
PubMed
PubMed Central
CrossRef
Google Scholar
Zhao B, Wan L (2012) Metal metabolic homeostasis disruption and early initiation of mechanism for Alzheimer′s disease. Prog Biochem Biophys 39(8):756–763
CAS
CrossRef
Google Scholar