Skip to main content

Tau Phosphorylation and Amyloid-β Deposition in the Presence of Formaldehyde

  • 584 Accesses

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with a relentless progression. It is associated with amyloid-β (Aβ) peptide deposition in senile plaques and hyperphosphorylated Tau protein in neurofibrillary tangles in the AD patients’ brain. Aβ accumulation occurs in early preclinical stage as a trigger factor for AD pathogenesis followed by silence of synapses and Tau hyperphosphorylation. However, what triggers Aβ deposition and Tau hyperphosphorylation is still under investigation. As an endogenous small-molecule metabolite, formaldehyde is produced by multiple cellular processes, including lipid oxidation, protein denaturation, sugar decomposition, methanol degradation, oxidative stress, DNA demethylation, and semicarbazide-sensitive amine oxidase (SSAO) catalyzation (see Chap. 2). Recent studies demonstrated that formaldehyde plays a pivotal role in the development of age-related neurodegenerative diseases by inducing the cellular component malfunction, such as Tau hyperphosphorylation, Aβ aggregation, and cell apoptosis. However, the underlying molecular mechanisms remain largely elusive. This chapter briefly introduces recent progresses on production and accumulation of formaldehyde with aging and the signaling pathways of formaldehyde, leading to dysfunction of nuclear Tau protein, aggregation of Aβ, as well as dysfunction of ApoE in vitro and in vivo. Formaldehyde acts as an effective trigger of Tau protein hyperphosphorylation in cell lines, primary cultured neurons, mouse brains, as well as monkey brains. During formaldehyde-induced Tau hyperphosphorylation, activation of Tau phosphorylation kinases glycogen synthase kinase 3 beta (GSK-3β) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) as well as suppression of protein phosphatase 2A (PP2A) were shown to be highlighted pathways. Long-term incubation of N2a cells with formaldehyde at the pathological concentration referred to AD patients resulted in formaldehyde accumulation also inducing Tau hyperphosphorylation and morphological changes of neuronal processes and neurites. Both Tau hyperphosphorylation and Aβ deposition were found in the hippocampus and cerebral cortex of rhesus monkeys through a long-term feeding with low concentration of methanol in drinking water or cerebral ventricle injection, and those monkeys suffered from decline of cognitive abilities as well. Formaldehyde is shown to be a strong trigger of Aβ deposition and Tau phosphorylation, so that the dysmetabolism of endogenous formaldehyde should occur in the early stage of AD as formaldehyde disturbs nervous system in different pathways and in diverse manners.

Keywords

  • Formaldehyde
  • Methanol
  • Tau hyperphosphorylation
  • Neurofibrillary tangles
  • Tauopathy
  • Amyloid-β
  • Senile plaque
  • Cognitive impairment
  • APOE4
  • Neurite
  • Neuronal processes
  • Cell death
  • Mouse model
  • Nonhuman primate
  • Dephosphorylation
  • Pathology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-024-1177-5_9
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-94-024-1177-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5.

References

  • Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J, Binder LI (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 113(Pt 21):3737–3745

    CAS  PubMed  Google Scholar 

  • Allison SL, Fagan AM, Morris JC, Head D (2016) Spatial navigation in preclinical Alzheimer’s disease. J Alzheimer’s Dis JAD 52:77–90

    PubMed  CrossRef  Google Scholar 

  • Alonso AD, Beharry C, Corbo CP, Cohen LS (2016) Molecular mechanism of prion-like tau-induced neurodegeneration. Alzheimer’s Dementia J Alzheimer’s Assoc 12:1090–1097

    CrossRef  Google Scholar 

  • Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J (1999) Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett 453:260–264

    CAS  PubMed  CrossRef  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde [about a peculiar disease of the cerebral cortex]. Allgemeine Zeitschrift fur Psychiatrie und Psychisch-Gerichtlich Medizin 64:146–148

    Google Scholar 

  • Alzheimer’s A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimer’s Demen 11:332–384

    CrossRef  Google Scholar 

  • Arnsten AF, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    CAS  PubMed  Google Scholar 

  • Avila J (2006) Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett 580:2922–2927

    CAS  PubMed  CrossRef  Google Scholar 

  • Ballard C, Khan Z, Clack H, Corbett A (2011) Nonpharmacological treatment of Alzheimer disease. Can J Psychiatr 56:589–595

    CrossRef  Google Scholar 

  • Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC (2016) A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer’s disease. Exp Gerontol 94:103–107

    Google Scholar 

  • Bird TD (1993) Early-onset familial Alzheimer disease. In: GeneReviews(R) editors: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH et al. (eds) Seattle (WA)

    Google Scholar 

  • Blennow K (2005) CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5:661–672

    CAS  PubMed  CrossRef  Google Scholar 

  • Bruckner J, Warren D (2001) Toxic effects of solvents and vapors in Casarett & Doull’s toxicology. The basic science of poisons, 6th edn. Klaassen CD, McGraw-Hill, Kansas, USA, pp 894–895

    Google Scholar 

  • Bufill E, Blesa R, Augusti J (2013) Alzheimer’s disease: an evolutionary approach. J Anthropol Sci 91:135–157

    PubMed  Google Scholar 

  • Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461–463

    CAS  PubMed  CrossRef  Google Scholar 

  • Cai T, Che H, Yao T, Chen Y, Huang C, Zhang W, Du K, Zhang J, Cao Y, Chen J et al (2011) Manganese induces tau hyperphosphorylation through the activation of ERK MAPK pathway in PC12 cells. Toxicol Sci 119:169–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C et al (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3:89ra57

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chan SF, Sucher NJ (2001) An NMDA receptor signaling complex with protein phosphatase 2A. J Neurosci 21:7985–7992

    CAS  PubMed  Google Scholar 

  • Chen XX, Su T (2015) Microcirculation dysfunction in age-related cognitive impairment. Prog Biochem Biophys 42(12):1077–1083

    CAS  Google Scholar 

  • Chen YH, Luo JY, Li W, He RQ (1999) Effect of acetaldehyde on phosphorylation of human neuronal tau. J Biochem Mol Biol & Biophys 3:197–202

    CAS  Google Scholar 

  • Chen K, Kazachkov M, Yu PH (2007) Effect of aldehydes derived from oxidative deamination and oxidative stress on beta-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Trans (Vienna, Austria: 1996) 114:835–839

    Google Scholar 

  • Chen N, Dai LF, Jiang WY, Wu Y (2012a) Pathogenic role of UPR (unfolded protein response) among hereditary Leukoencephalopathy and neurodegenerative disorders after endoplasmic reticulum stress. Prog Biochem Biophys 39:764–770

    CAS  CrossRef  Google Scholar 

  • Chen NN, Luo DJ, Yao XQ, Yu C, Wang Y, Wang Q, Wang JZ, Liu GP (2012b) Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats. J Alzheimer’s Dis 30:585–594

    CAS  Google Scholar 

  • Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35:607–618

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cui Y, Su T, Zhang SD, Huang P, He YG, Liu Y, Zhang C, Ritch R, He RQ (2016) Elevated urine formaldehyde in elderly patients with primary open angle glaucoma. Int J Ophthalmol 9:411–416

    PubMed  PubMed Central  Google Scholar 

  • Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103:2739–2746

    CAS  PubMed  CrossRef  Google Scholar 

  • Engelborghs S, De Deyn PP (2001) Biological and genetic markers of sporadic Alzheimer’s disease. Acta Med Okayama 55:55–63

    CAS  PubMed  Google Scholar 

  • Evans AM, Fameli N, Ogunbayo OA, Duan J, Navarro-Dorado J (2016) From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Sci China Life Sci 59(8):749–763

    CAS  PubMed  CrossRef  Google Scholar 

  • Fu HJ, Rodriguez GA, Herman M, Emrani S, Nahmani E, Barrett G, Figueroa HY, Goldberg E, Hussaini SA, Duff KE (2017) Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron 93(3):533–541

    CAS  PubMed  CrossRef  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    CAS  PubMed  CrossRef  Google Scholar 

  • Ghosh A, Giese KP (2015) Calcium/calmodulin-dependent kinase II and Alzheimer’s disease. Mol Brain 8(78). doi:10.1186/s13041-015-0166-2

  • Goedert M, Wischik CM, Crowther RA et al (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85(11):4051–4055

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K (1993) Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem 61:921–927

    CAS  PubMed  CrossRef  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Trans (Vienna, Austria: 1996) 112:813–838

    Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    CAS  PubMed  CrossRef  Google Scholar 

  • Harrington CR, Mukaetova-Ladinska EB, Hills R et al (1991) Measurement of distinct immunochemical presentations of tau protein in Alzheimer disease. Proc Natl Acad Sci U S A 88(13):5842–5846

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • He R (2016) Abnormal lysosome, formaldehyde Dysmetabolism and age-related cognitive impairment. Prog Biochem Biophys 43(12):1197

    Google Scholar 

  • He R, Luo J, Li W (1998) Effect of ethanol on the aggregation of human neuronal tau protein. Protein Pept Lett 5(5):279–285

    CAS  Google Scholar 

  • He R, Lu J, Miao JY (2010) Formaldehyde stress. Sci China Life Sci 53(12):1399–1404

    CAS  PubMed  CrossRef  Google Scholar 

  • He X, Li Z, Rizak JD, Wu S, Wang Z, He R, Su M, Qin D, Wang J, Hu X (2016) Resveratrol attenuates formaldehyde induced hyperphosphorylation of Tau protein and cytotoxicity in N2a cells. Front Neurosci 10(598). doi:10.3389/fnins.2016.00598

  • Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59(10):1006–1023

    CAS  PubMed  CrossRef  Google Scholar 

  • Hua Q, He RQ (2002) Effect of phosphorylation and aggregation on tau binding to DNA. Protein Pept Lett 9(4):349–357

    CAS  PubMed  CrossRef  Google Scholar 

  • Hua Q, He RQ (2003) Tau could protect DNA double helix structure. Biochim Biophys Acta 1645(2):205–211

    CAS  PubMed  CrossRef  Google Scholar 

  • Hua Q, He RQ, Haque N, Qu MH, del Carmen Alonso A, Grundke-Iqbal I, Iqbal K (2003) Microtubule associated protein tau binds to double-stranded but not single-stranded DNA. Cell Mol Life Sci CMLS 60(2):413–421

    CAS  PubMed  CrossRef  Google Scholar 

  • Huang W, Qiu C, von Strauss E, Winblad B, Fratiglioni L (2004) APOE genotype, family history of dementia, and Alzheimer disease risk: a 6-year follow-up study. Arch Neurol 61(12):1930–1934

    PubMed  CrossRef  Google Scholar 

  • Jembrek MJ, Babic M, Pivac N, Hof PR, Simic G (2013) Hyperphosphorylation of tau by gsk-3 beta in alzheimer’s disease: the interaction of a beta and sphingolipid mediators as a therapeutic target. Transl Neurosci 4(4):466–476

    CrossRef  Google Scholar 

  • Jian X, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59(8):777–791

    CrossRef  CAS  Google Scholar 

  • Kar A, Kuo D, He R, Zhou J, Wu JY (2005) Tau alternative splicing and frontotemporal dementia. Alzheimer Dis Assoc Disord 19(Suppl 1):S29–S36

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697(1–2):143–153

    CAS  PubMed  CrossRef  Google Scholar 

  • Kilburn KH (1994) Neurobehavioral impairment and seizures from formaldehyde. Arch Environ Health 49(1):37–44

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim B, Backus C, Oh S, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150(12):5294–5301

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim DH, Huh JW, Jang M, Suh JH, Kim TW, Park JS, Yoon SY (2012) Sitagliptin increases tau phosphorylation in the hippocampus of rats with type 2 diabetes and in primary neuron cultures. Neurobiol Dis 46(1):52–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Kopke E, Tung YC, Shaikh S et al (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384

    CAS  PubMed  Google Scholar 

  • Ksiezak-Reding H, Liu WK, Yen SH (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 597(2):209–219

    CAS  PubMed  CrossRef  Google Scholar 

  • Li T, Paudel HK (2006) Glycogen synthase kinase 3beta phosphorylates Alzheimer’s disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry 45(10):3125–3133

    CAS  PubMed  CrossRef  Google Scholar 

  • Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2012) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33(7):1400–1410

    PubMed  CrossRef  CAS  Google Scholar 

  • Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305

    CAS  PubMed  Google Scholar 

  • Lithfous S, Dufour A, Despres O (2013) Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res Rev 12(1):201–213

    PubMed  CrossRef  Google Scholar 

  • Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, Ramakrishna N, Gong CX (2008) Overexpression of Dyrk1A contributes to neurofibrillary degeneration in down syndrome. FASEB J 22(9):3224–3233

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Liu K, He Y, Yu L, Chen Y, He R (2017) Markedly elevated formaldehyde in the cecum of APP/PS1 mouse. Microbiol China 44(8):1761–1766

    Google Scholar 

  • Loomis PA, Howard TH, Castleberry RP, Binder LI (1990) Identification of nuclear tau isoforms in human neuroblastoma cells. Proc Natl Acad Sci U S A 87(21):8422–8426

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lu Z, Li CM, Qiao Y, Yan Y, Yang X (2008) Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air 18(2):77–83

    CAS  PubMed  CrossRef  Google Scholar 

  • Lu J, Miao JY, Pan R, He RQ (2011) Formaldehyde-mediated hyperphosphorylation disturbs the interaction between tau protein and DNA. Prog Biochem Biophys 38(12):1113–1120

    CAS  CrossRef  Google Scholar 

  • Lu J, Miao J, Su T, Liu Y, He R (2013a) Formaldehyde induces hyperphosphorylation and polymerization of tau protein both in vitro and in vivo. Biochim Biophys Acta 1830(8):4102–4116

    CAS  PubMed  CrossRef  Google Scholar 

  • Lu Y, He HJ, Zhou J, Miao JY, Lu J, He YG, Pan R, Wei Y, Liu Y, He RQ (2013b) Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimers Dis 37(3):551–563

    PubMed  Google Scholar 

  • Lu J, Li T, He R, Bartlett PF, Gotz J (2014) Visualizing the microtubule-associated protein tau in the nucleus. Sci China Life Sci 57(4):422–431

    CAS  PubMed  CrossRef  Google Scholar 

  • Luo J, He R (1999) Effect of acetaldehyde on aggregation of neuronal tau. Protein Pept Lett 6(2):105–110

    CAS  Google Scholar 

  • MacAllister SL, Choi J, Dedina L, O’Brien PJ (2011) Metabolic mechanisms of methanol/formaldehyde in isolated rat hepatocytes: carbonyl-metabolizing enzymes versus oxidative stress. Chem Biol Interact 191(1–3):308–314

    CAS  PubMed  CrossRef  Google Scholar 

  • Miao J, Lu J, Zhang Z, Tong Z, He R (2013) The effect of formaldehyde on cell cycle is in a concentration-dependent manner. Prog Biochem Biophys 40(7):641–651

    CAS  Google Scholar 

  • Michel G, Mercken M, Murayama M, Noguchi K, Ishiguro K, Imahori K, Takashima A (1998) Characterization of tau phosphorylation in glycogen synthase kinase-3beta and cyclin dependent kinase-5 activator (p23) transfected cells. Biochim Biophys Acta 1380(2):177–182

    CAS  PubMed  CrossRef  Google Scholar 

  • Monte WC (2012) While science sleeps (SC, USA: Charleston)

    Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci 25(1):22–26

    CAS  PubMed  CrossRef  Google Scholar 

  • Nie CL, Wei Y, Chen XY, Liu YY, Dui W, Liu Y, Davies MC, Tendler SJB, He RG (2007) Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One 2(7). doi:10.1371/journal.pone.0000629

  • Nobutoki T, Ihara T (2015) Early disruption of neurovascular units and microcirculatory dysfunction in the spinal cord in spinal muscular atrophy type I. Med Hypotheses 85(6):842–845

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira JM, Henriques AG, Martins F, Rebelo S, Silva OABDE (2015) Amyloid-beta modulates both a beta PP and tau phosphorylation. J Alzheimers Dis 45(2):495–507

    CAS  PubMed  Google Scholar 

  • Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B, Rosengren L, Vanmechelen E, Blennow K (2005) Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51(2):336–345

    CAS  PubMed  CrossRef  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622

    CAS  PubMed  CrossRef  Google Scholar 

  • Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE et al (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27(50):13635–13648

    CAS  PubMed  CrossRef  Google Scholar 

  • Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G (2011) Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 1383(300–6):300–306

    CAS  PubMed  CrossRef  Google Scholar 

  • Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The Excitotoxin Quinolinic acid induces tau phosphorylation in human neurons. PLoS One 4(7). doi:10.1371/journal.pone.0006344

  • Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Drose S, Brandt U et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rizak JD, Ma Y, Hu X (2014) Is formaldehyde the missing link in AD pathology? The differential aggregation of amyloid-beta with APOE isoforms in vitro. Curr Alzheimer Res 11(5):461–468

    CAS  PubMed  CrossRef  Google Scholar 

  • Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Anesthesia induces phosphorylation of tau. J Alzheimer’s Dis 16(3):619–626

    CAS  CrossRef  Google Scholar 

  • Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6(10). doi:10.1186/1756-6606-6-10

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano J, Fernandez AP, Martinez-Murillo R, Martinez A (2010) High sensitivity to carcinogens in the brain of a mouse model of Alzheimer’s disease. Oncogene 29(15):2165–2171

    CAS  PubMed  CrossRef  Google Scholar 

  • Shcherbakova LN, Tel’pukhov VI, Trenin SO, Bashilov IA, Lapkina TI (1986) Permeability of the blood-brain barrier to intra-arterial formaldehyde. Biull Eksp Biol Med 102(11):573–575

    CAS  PubMed  Google Scholar 

  • Shu R, Wong W, Ma QH, Yang ZZ, Zhu H, Liu FJ, Wang P, Ma J, Yan S, Polo JM, et al (2015) APP intracellular domain acts as a transcriptional regulator of miR-663 suppressing neuronal differentiation. Cell Death Dis 19(6). doi:10.1038/cddis.2015.10

  • Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7(16). doi:10.3389/fnmol.2014.00016

  • Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739(2–3):280–297

    CAS  PubMed  CrossRef  Google Scholar 

  • Su T, Monte WC, Hu X, He Y, He R (2016) Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment. Curr Top Med Chem 16(5):472–484

    CAS  PubMed  CrossRef  Google Scholar 

  • Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286(6):4566–4575

    CAS  PubMed  CrossRef  Google Scholar 

  • Sun P, Chen JY, Li J, Sun MR, Mo WC, Liu KL, Meng YY, Liu Y, Wang F, He RQ et al (2013) The protective effect of geniposide on human neuroblastoma cells in the presence of formaldehyde. BMC Complement Altern Med 13(152). doi:10.1186/1472-6882-13-152

  • Tang XQ, Zhuang YY, Zhang P, Fang HR, Zhou CF, Gu HF, Zhang H, Wang CY (2013) Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J Mol Neurosci 49(1):140–149

    CAS  PubMed  CrossRef  Google Scholar 

  • Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, Luo H, Lu J, Zhou J, Wan Y et al (2011) Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 32(1):31–41

    CAS  PubMed  CrossRef  Google Scholar 

  • Tong Z, Han C, Luo W, Li H, Luo H, Qiang M, Su T, Wu B, Liu Y, Yang X et al (2013) Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep 3(1807). doi:10.1038/srep01807

  • Tong Z, Han C, Qiang M, Wang W, Lv J, Zhang S, Luo W, Li H, Luo H, Zhou J et al (2015) Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease. Neurobiol Aging 36(1):100–110

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsuji S (2010) Genetics of neurodegenerative diseases: insights from high-throughput resequencing. Hum Mol Genet 19(R1):R65–R70

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wallin A, Nordlund A, Jonsson M, Blennow K, Zetterberg H, Ohrfelt A, Stalhammar J, Eckerstrom M, Carlsson M, Olsson E et al (2016a) Alzheimer’s disease--subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies. J Cereb Blood Flow Metab 36(1):95–113

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wallin A, Nordlund A, Jonsson M, Lind K, Edman A, Gothlin M, Stalhammar J, Eckerstrom M, Kern S, Borjesson-Hanson A, Carlsson M, Olsson E, Zetterberg H, Blennow K, Svensson J, Öhrfelt A, Bjerke M, Rolstad S, Eckerström C (2016b) The Gothenburg MCI study: design and distribution of Alzheimer’s disease and subcortical vascular disease diagnoses from baseline to 6-year follow-up. J Cereb Blood Flow Metab 36(1):114–131

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wang Y, Loomis PA, Zinkowski RP, Binder LI (1993) A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol 121(2):257–267

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang JH, Rizak JD, Chen YM, Li L, Hu XT, Ma YY (2013a) Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys. Neurosci Bull 29(1):37–46

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013b) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimer’s Dis 33(Suppl 1):S123–S139

    Google Scholar 

  • Wang J, Zhou J, Mo W, He Y, Wei Y, He R, Yi F (2017) Pathological level of formaldehyde decreases cell viability and adhesive morphology in murine neuroblastoma cells. Prog Biochem Biophys 44(7):601–614

    Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Whittington RA, Virag L, Marcouiller F, Papon MA, El Khoury NB, Julien C, Morin F, Emala CW, Planel E (2011) Propofol directly increases tau phosphorylation. PLoS One 6(1):e16648. doi:10.1371/journal.pone.0016648

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu L, Rosa-Neto P, Hsiung GY, Sadovnick AD, Masellis M, Black SE, Jia J, Gauthier S (2012) Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci Le journal canadien des sciences neurologiques 39(4):436–445

    CrossRef  Google Scholar 

  • Wu B, Wei Y, Wang Y, Su T, Zhou L, Liu Y, He R (2015) Gavage of D-Ribose induces Abeta-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 6(33):34128–34142

    PubMed  PubMed Central  Google Scholar 

  • Yanagisawa M, Planel E, Ishiguro K, Fujita SC (1999) Starvation induces tau hyperphosphorylation in mouse brain: implications for Alzheimer’s disease. FEBS Lett 461(3):329–333

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang M, Lu J, Miao J, Rizak J, Yang J, Zhai R, Zhou J, Qu J, Wang J, Yang S et al (2014a) Alzheimer’s disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. J Alzheimer’s Dis JAD 41(4):1117–1129

    PubMed  Google Scholar 

  • Yang M, Miao J, Rizak J, Zhai R, Wang Z, Huma T, Li T, Zheng N, Wu S, Zheng Y et al (2014b) Alzheimer’s disease and methanol toxicity (part 2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. J Alzheimer’s Dis 41(4):1131–1147

    CAS  Google Scholar 

  • Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, Kim J, Eimer WA, Estus S, Rebeck GW et al (2012) APOE4-specific changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 287(50):41774–41786

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yu PH (2001) Involvement of cerebrovascular semicarbazide-sensitive amine oxidase in the pathogenesis of Alzheimer’s disease and vascular dementia. Med Hypotheses 57(2):175–179

    CAS  PubMed  CrossRef  Google Scholar 

  • Yu J, Su T, Zhou T, He Y, Lu J, Li J, He R (2014) Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults. Neurosci Bull 30(2):172–184

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhao B, Wan L (2012) Metal metabolic homeostasis disruption and early initiation of mechanism for Alzheimer′s disease. Prog Biochem Biophys 39(8):756–763

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgment

This project was supported by grants from the National Key Research and Development Program of China (2016YFC1306300), the National Basic Research Program of China (973 Program) (2012CB911004), the Natural Scientific Foundation of China (NSFC 31270868), Foundation of Chinese Academy of Sciences CAS-20140909, and the Queensland-Chinese Academy of Sciences Biotechnology Fund (GJHZ201302).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lu, J., He, R. (2017). Tau Phosphorylation and Amyloid-β Deposition in the Presence of Formaldehyde. In: Formaldehyde and Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1177-5_9

Download citation