Skip to main content

Effects of Formaldehyde on Protein (Tau) Aggregation and Cytotoxicity

  • Chapter
  • First Online:
  • 789 Accesses

Abstract

The human body, including the brain, is producing and processing formaldehyde all the time. Formaldehyde is active in the reaction with biomacromolecules, especially with peptides and proteins. So neuronal proteins have chances to react directly with formaldehyde. Among the proteins, neuronal Tau is extremely prone to react with formaldehyde because Tau features in “wormlike” conformation, and its α-/ε-amino groups are exposed to the protein exterior. Tau is a multifunctional protein which is able to bind to microtubule, actin, DNA and RNA, with its proline-rich domain and microtubule-binding domain. Tau promotes the melting temperature of DNA double strands and accelerates refolding of denatured DNA. Interaction between Tau and DNA forms a complex called “DNA-Tauosome”, which may be the structure in resistance to the attack of free radicals, for example, reactive oxygen species (ROS). Treatment with formaldehyde inactivates Tau protein in the interaction with microtubule as well as DNA in which the formation of DNA-Tauosome is inhibited. Formaldehyde induces Tau aggregation which features in globular-like deposits stained with Congo red and probed by the fluorescence of thioflavin T (ThT). The cytotoxicity of globular-like aggregate leads to the impairment of cell viability and eventually to cell death. Lysosomes are classically considered as nonspecific systems in degradation of protein aggregation. Endogenous formaldehyde is mainly localized in lysosome. Abnormal lysosomes increase as aging and so does endogenous formaldehyde. Dysfunction of lysosome and formaldehyde metabolism could be the major risk factors to impede the cellular degradation and scavenging of protein aggregation. Since formaldehyde is actively and directly reacted with the side chains of peptides and proteins, we mainly discuss the effect of chemical modification with formaldehyde on morphology and function of neuronal Tau in this chapter, except for phosphorylation, glycosylation, and other modifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science Press, New York, pp 381–382

    Google Scholar 

  • Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci U S A 100(15):9034–9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady RM, Zinkowski RP, Binder LI (1995) Presence of tau in isolated nuclei from human brain. Neurobiol Aging 16(3):479–486

    Article  CAS  PubMed  Google Scholar 

  • Brewer TF, Chang CJ (2015) An Aza-cope reactivity-based fluorescent probe for imaging formaldehyde in living cells. J Am Chem Soc 137(34):10886–10889

    Article  CAS  PubMed  Google Scholar 

  • Bryan JB, Nagle BW, Doenges KH (1975) Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc Natl Acad Sci U S A 72(9):3570–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter DC (1946) The protein-formaldehyde reaction; the question of methylene bridges and the unreactivity of benzoyl-d (-)-alanine toward formaldehyde. Arch Biochem 9:159–164

    CAS  PubMed  Google Scholar 

  • Chen YH, Luo JY, Li W, He RQ (1999) Effect of acetaldehyde on phosphorylation of human neuronal tau. J Biochem Mol Biol Biophys 3:197–202

    CAS  Google Scholar 

  • Chen YH, He RQ, Liu Y, Xue ZG (2000) Effect of human neuronal tau on denaturation and reactivation of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase. Biochem J 351:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Kazachkov M, Yu PH (2007) Effect of aldehydes derived from oxidative deamination and oxidative stress on β-amyloid aggregation: pathological implications to Alzheimer’s disease. J Neural Transm 114(6):835–839

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sun M, Wang X, Lu J, Wei Y, Tan Y, Liu Y, Götz J, He R, Hua Q (2014) The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells. Sci China Life Sci 57(4):412–421

    Article  CAS  PubMed  Google Scholar 

  • Chen XX, Su T, He YG, He RQ (2017) Spatial cognition decline caused by excess formaldehyde in the lysosome. Prog Biochem Biophys 44(6):486–494

    Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116(2):207–225

    Article  CAS  PubMed  Google Scholar 

  • Cohen FE (1999) Protein misfolding and prion diseases. J Mol Biol 293(2):313–320

    Article  CAS  PubMed  Google Scholar 

  • Cook C, Carlomagno Y, Gendron TF, Dunmore J, Scheffel K, Stetler C, Davis M, Dickson D, Jarpe M, DeTure M, Petrucelli L (2014) Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 23(1):104–116

    Article  CAS  PubMed  Google Scholar 

  • Corces VG, Manso R, De La Torre J, Avila J, Nasr A, Wiche G (1980) Effects of DNA on microtubule assembly. Eur J Biochem 105(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Correas I, Padilla R, Avila J (1990) The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Biochem J 269(1):61–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross DC, Munoz JP, Hernandez P, Maccioni RB (2000) Nuclear and cytoplasmic tau proteins from human nonneuronal cells share common structural and functional features with brain tau. J Cell Biochem 78(2):305–317

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (1998) Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med (Berl) 76(1):6–12

    Article  CAS  Google Scholar 

  • Descamps MN, Bordy T, Hue J, Mariano S, Nonglaton G, Schultz E, Tran-Thi TH, Vignoud-Despond S (2010) Real-time detection of formaldehyde by a fluorescence-based sensor. Procedia Engineer 5:1009–1012

    Article  CAS  Google Scholar 

  • Elie A, Prezel E, Guérin C, Denarier E, Ramirez-Rios S, Serre L, Andrieux A, Fourest-Lieuvin A, Blanchoin L, Arnal I (2015) Tau co-organizes dynamic microtubule and actin networks. Sci Rep 5:9964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis RJ (1990) The molecular chaperone concept. Semin Cell Biol 1(1):1–9

    CAS  PubMed  Google Scholar 

  • Evans AM, Fameli N, Ogunbayo OA, Duan J, Navarro-Dorado J (2016) From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Sci China Life Sci 59(8):749–763

    Article  CAS  PubMed  Google Scholar 

  • Farias GA, Munoz JP, Garrido J, Maccioni RB (2002) Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies. J Cell Biochem 85(2):315–324

    Article  CAS  PubMed  Google Scholar 

  • Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853

    Article  CAS  PubMed  Google Scholar 

  • French D, Edsall JT (1945) The reactions of formaldehyde with amino acids and proteins. Adv Protein Chem 2:277–335

    Article  CAS  Google Scholar 

  • Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E (1998) Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37(28):10223–10230

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara S, Nishigaki T, Miyata K, Tsuchiya N, Waku T, Tanaka N (2012) Mechanism of the chaperone-like and antichaperone activities of amyloid fibrils of peptides from αA-crystallin. Biochemistry 51(27):5394–5401

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg SD, Crino PB, Lee VMY, Eberwine JH, Trojanowski JQ (1997) Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Ann Neurol 41(2):200–209

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9(13):4225–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989a) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3(4):519–526

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989b) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8(2):393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383(6600):550–553

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JA, Johnson GV (1995) Localization and in situ phosphorylation state of nuclear tau. Exp Cell Res 220(2):332–337

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Crowther RA, Jakes R, Goedert M (1997) Alzheimer-like changes in microtubule-associated protein tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J Biol Chem 272(52):33118–33124

    Article  CAS  PubMed  Google Scholar 

  • He RQ, Luo JY, Li W (1998) Effect of ethanol on the aggregation of human neuronal tau protein. Protein Pept Lett 5:279–285

    CAS  Google Scholar 

  • He RQ (2016) Abnormal lysosome, formaldehyde Dysmetabolism and age-related cognitive impairment. Prog Biochem Biophys 43(12):1197

    Google Scholar 

  • He HJ, Wang XS, Pan R, Wang DL, Liu MN, He RQ (2009) The proline-rich domain of tau plays a role in interactions with actin. BMC Cell Biol 10:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He RQ, Lu J, Miao JY (2010) Formaldehyde. Stress Sci China Life Sci 53(10):1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Henriquez JP, Cross D, Vial C, Maccioni RB (1995) Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem Funct 13(4):239–250

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107(4):1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Holt MR, Koffer A (2001) Cell motility: proline-rich proteins promote protrusions. Trends Cell Biol 11(1):3846

    Article  Google Scholar 

  • Hopwood D, Yeaman G, Milne G (1988) Differentiating the effects of microwave and heat on tissue proteins and their crosslinking by formaldehyde. Histochem J 20(6–7):341–346

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59(10):1006–1023

    Article  CAS  PubMed  Google Scholar 

  • Hua Q, He RQ (2000) Human neuronal tau promoting the melting temperature of DNA. Chin Sci Bull 45(11):999–1002

    Article  CAS  Google Scholar 

  • Hua Q, He RQ (2002) Effect of phosphorylation and aggregation on tau binding to DNA. Prot Pept Lett 9(4):349–357

    Google Scholar 

  • Hua Q, He RQ (2003) Tau could protect DNA double helix structure. Biochim Biophys Acta 645:205–211

    Article  Google Scholar 

  • Hua Q, Nie CL, Liu Y, He RQ (2002) Formaldehyde inducing an amyloid-like aggregation of human neuronal tau. Biophys J (Annual Meeting Abstracts) 82(1):504a

    Google Scholar 

  • Hua Q, He RQ, Haque N, MH Q, del Carmen AA, Grundke-Iqbal I, Iqbal K (2003) Microtubule associated protein tau binds to double-stranded but not single stranded DNA. Cell Mol Life Sci 60(2):413–421

    Article  CAS  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9(1):119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian X, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59(8):777–791

    Article  CAS  Google Scholar 

  • Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E (1996) RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 399(3):344–349

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Chen J, Hirokawa N (1992) Microtubule bundling by tau proteins in vivo: analysis of functional domains. EMBO J 11(11):3953–3961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto Y, Maeda H (1980) Reevaluation of the reaction of formaldehyde at low concentration with amino acids. J Biochem 87(5):1519–1530

    Article  CAS  PubMed  Google Scholar 

  • Knowles R, LeClerc N, Kosik KS (1994) Organization of actin and microtubules during process formation in tau-expressing Sf9 cells. Cell Motil Cytoskeleton 28(3):256–264

    Article  CAS  PubMed  Google Scholar 

  • Kotani S, Nishida E, Kumagai H, Sakai H (1985) Calmodulin inhibits interaction of actin with MAP2 and tau, two major microtubule-associated proteins. J Biol Chem 260(19):10779–10783

    CAS  PubMed  Google Scholar 

  • Krylova SM, Musheev M, Nutiu R, Li Y, Lee G, Krylov SN (2005) Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 6:1371–1375

    Article  CAS  Google Scholar 

  • Kumar KA, Muniyappa K (1992) Use of structure-directed DNA ligands to probe the binding of RecA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J Biol Chem 267(34):24824–24832

    CAS  PubMed  Google Scholar 

  • Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2(6):1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang XS, Qu MH, Liu Y, He RQ (2005) Human protein tau represses DNA replication in vitro. Biochim Biophys Acta 1726(3):280–286

    Article  CAS  PubMed  Google Scholar 

  • Li FX, Lu J, Xu YJ, Tong ZQ, Nie CL, He RQ (2008) Formaldehyde-mediated chronic damage may be related to sporadic neurodegeneration. Prog Biochem Biophys 35(4):393–400

    Google Scholar 

  • Li T, Su Tao, He YG, He RQ (2016) Chronic-dehydrated dysmetabolism of Formaldehyde in mouse brain and decline of learning in the shuttle box. Prog Biochem Biophys 43(4):429–438

    Google Scholar 

  • Liu KL, He YG, Yu LX, He RQ (2017) Elevated formaldehyde in the cecum of APP/PS1 mouse. Microbiol China 44(8):1761–1766

    Google Scholar 

  • Loomis PA, Howard TH, Castleberry RP, Binder LI (1990) Identification of nuclear tau isoforms in human neuroblastoma cells. Proc Natl Acad Sci U S A 87(21):8422–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu K, Ye W, Zhou L, Collins LB, Chen X, Gold A, Ball LM, Swenberg JA (2010) Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers. J Am Chem Soc 132(10):3388–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, He HJ, Zhou J, Miao JY, Lu J, He YG, Pan R, Wei Y, Liu Y, He RQ (2013) Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimer’s Dis 37(3):551–563

    Google Scholar 

  • Lu J, Li T, He RQ, Bartlett PF, Götz J (2014) Visualizing the microtubule-associated protein tau in the nucleus. Sci China Life Sci 57(4):422–431

    Article  CAS  PubMed  Google Scholar 

  • Luo JY, He RQ (1999) Effect of acetaldehyde on aggregation of neuronal tau. Protein Pept Lett 6(2):105–110

    CAS  Google Scholar 

  • Luo JY, Li W, He RQ (2000a) The fluorescent characterization of the aggregating human neuronal tau. Int J Biochem Macromol (UK) 27(4):263–268

    Article  CAS  Google Scholar 

  • Luo JY, Liu Y, Hua Q, He RQ (2000b) Conformational changes of human neuronal tau during thermal and guanidine-Hcl denaturation. Protein Pept Lett 7:133–141

    CAS  Google Scholar 

  • Ma W, Cao EH, Zhang J, Qin JF (1998) Phenanthroline-cu complex-mediated chemiluminescence of DNA and its potential use in antioxidation evaluation. J Photochem Photobiol B 44(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Magdeldin S, Yamamoto T (2012) Toward deciphering proteomes of formalin-fixed paraffin-embedded (FFPE) tissues. Proteomics 12(7):1045–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraga DM, Nunez P, Garrido J, Maccioni RB (1993) A tau fragment containing a repetitive sequence induces bundling of actin filaments. J Neurochem 61(3):979–986

    Article  CAS  PubMed  Google Scholar 

  • Nie CL, Zhang W, Zhang D, He RQ (2005) Changes in conformation of human neuronal tau during denaturation in formaldehyde solution. Prot Pept Lett 12(1):75–78

    Article  CAS  Google Scholar 

  • Nie CL, Wang XS, Liu Y, Perrett S, He RQ (2007a) Amyloid-like aggregates of neuronal tau are induced by formaldehyde exposure and promote apoptosis of neuronal cells. BMC Neurosci 20(5):A954–A954

    Google Scholar 

  • Nie CL, Wei Y, Chen XY, Liu YY, Dui W, Liu Y, Davies MC, Tendler SJ, He RQ (2007b) Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo. PLoS One 2(7):e629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paudel HK (1997a) Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of tau protein in vitro. J Biol Chem 272(45):28328–28334

    Article  CAS  PubMed  Google Scholar 

  • Paudel HK (1997b) The regulatory Ser262 of microtubule-associated protein tau is phosphorylated by phosphorylase kinase. J Biol Chem 272(3):1777–1785

    CAS  PubMed  Google Scholar 

  • Pepys MB (2006) Amyloidosis. Annu Rev Med 57:223–241

    Article  CAS  PubMed  Google Scholar 

  • Puchtler H, Meloan SN (1985) On the chemistry of formaldehyde fixation and its effects on immunohistochemical reactions. Histochemistry 82(3):201–204

    Article  CAS  PubMed  Google Scholar 

  • Qu MH, Li H, Tian R, Nie CL, Liu Y, Han BS, He RQ (2004) Neuronal tau induces DNA conformational changes observed by atomic force microscopy. Neuroreport 15(18):2723–2727

    CAS  PubMed  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102(30):10427–10432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy KB (1996) DNA recognition and structural specificities. Indian J Biochem Biophys 33(2):83–87

    CAS  PubMed  Google Scholar 

  • Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269(39):24290–24297

    CAS  PubMed  Google Scholar 

  • Simonsson S, Samuelsson T, Elias P (1998) The herpes simplex virus type 1 origin binding protein. Specific recognition of phosphates and methyl groups defines the interacting surface for a monomeric DNA binding domain in the major groove of DNA. J Biol Chem 273(38):24633–24639

    Article  CAS  PubMed  Google Scholar 

  • Sjoberg MK, Shestakova E, Mansuroglu Z, Maccioni RB, Bonnefoy E (2006) Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization. J Cell Sci 119(10):2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Sobue K, Tanaka T, Ashino N, Kakiuchi S (1985) Ca2+ and calmodulin regulate microtubule-associated protein-actin filament interaction in a flip-flop switch. Biochim Biophys Acta 845(3):366–372

    Article  CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81(11):678–699

    Article  CAS  PubMed  Google Scholar 

  • Sultan A, Nesslany F, Violet M, Bégard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S, Colin M, Bonnefoy E, Buée L, Galas MC (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286(6):4566–4575

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Kong X, Liu Z, Xu A, Lin W (2016a) Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Anal Chem 88(19):9359–9363

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Kong X, Xu A, Dong B, Lin W (2016b) Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew Chem Int Ed Eng 55(10):3356–3359

    Article  CAS  Google Scholar 

  • Theis ER (1944) The protein-formaldehyde I. Collagen. J. Biol. Chem 154(1):87–97

    CAS  Google Scholar 

  • Thurston VC, Zinkowski RP, Binder LI (1996) Tau as a nucleolar protein in human nonneural cells in vitro and in vivo. Chromosoma 105(1):20–30

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Nie CL, He RQ (2004) Chaperone-like manner of human neuronal tau towards lactate dehydrogenase. Neurochem Res 29(10):1863–1872

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, Luo H, Lu J, Zhou J, Wan Y, He R (2011) Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging 32(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Han C, Luo W, Wang X, Li H, Luo H, Zhou J, Qi J, He R (2013) Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age(dordr) 35(3):583–596

    Google Scholar 

  • Tuite E, Sehlstedt U, Hagmar P, Nordén B, Takahashi M (1997) Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism. Eur J Biochem 243(1–2):482–492

    Article  CAS  PubMed  Google Scholar 

  • Ukiyama E, Jancso-Radek A, Li B, Milos L, Zhang W, Phillips NB, Morikawa N, King CY, Chan G, Haqq CM, Radek JT, Poulat F, Donahoe PK, Weiss MA (2001) SRYand architectural gene regulation: the kinetic stability of a bent protein-DNA complex can regulate its transcriptional potency. Mol Endocrinol 15(3):363–377

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2(8):871–875

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Loomis PA, Zinkowski RP, Binder LI (1993) A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol 121(2):257–267

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Wang DL, Zhao J, Qu MH, Zhou XH, He HJ, He RQ (2006) The proline-rich domain and microtubule-binding domain of protein tau acting as RNA binding domains. Prot Pept Lett 13(7):679–685

    Article  CAS  Google Scholar 

  • Wei Y, Qu MH, Wang XS, Chen L, Wang DL, Liu Y, Hua Q, He RQ (2008) Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation. PLoS One 3(7):e2600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(12):4506–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang Y, Zeng L, Liu J, Kinsella JM, Sheng R (2016) A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-cope reaction. Talanta 160:645–652

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi PS, Purich DL (1993) Microtubule-associated protein interactions with actin filaments: evidence for differential behavior of neuronal MAP-2 and tau in the presence of phosphatidyl-inositol. Biochem Biophys Res Commun 190(3):710–715

    Article  CAS  PubMed  Google Scholar 

  • Yang MF, Lu J, Miao JY, Rizak J, Yang JZ, Zhai RW, Zhou J, Qu JG, Wang JH, Yang SC, Ma YY, Hu XT, He RQ (2014a) Alzheimer’s disease and methanol toxicity (Part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. J Alzheimers Dis 41(4):1117–1129

    PubMed  Google Scholar 

  • Yang MF, Miao JY, Rizak J, Zhai RW, Wang ZB, Huma T, Li T, Zheng N, SH W, Zheng YW, Fan XN, Yang JZ, Wang JH, Yang SC, Ma YY, Lu L, He RQ, XT H (2014b) Alzheimer’s disease and methanol toxicity (Pt.2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. J Alzheimers Dis 41(4):1131–1147

    CAS  PubMed  Google Scholar 

  • Yin DZ (1993) Lipofuscin-like fluorophores can result from reactions between oxidized ascorbic acid and glutamine. Carbonyl protein cross-linking may represent a common reaction in oxygen radical and glycosylation-related ageing processes. Mech Ageing Dev 62:35–46

    Article  Google Scholar 

  • Yu PH (1990) Oxidative deamination of aliphatic amines by rat aorta semicarbazide-sensitive amine oxidase. J Pharm Pharmacol 42(12):882–884

    Article  CAS  PubMed  Google Scholar 

  • Yu PH (2001) Involvement of cerebrovascular semicarbazide-sensitive amine oxidase in the pathogenesis of Alzheimer's disease and vascular dementia. Med Hypotheses 57(2):175–179

    Article  CAS  PubMed  Google Scholar 

  • Yu PH, Lai CT, Zuo DM (1997) Formation of formaldehyde from adrenaline in vivo: a potential risk factor for stress-related Angiopathy. Neurochem Res 22(5):615–620

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Lin YX, Eschmann NA, Zhou HG, Rauch JN, Hernandez I, Guzman E, Kosik KS, Han S (2017) RNA stores tau reversibly in complex coacervates. PLoS Biol 6 15(7):e2002183

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the Beijing Municipal Science and Technology Project (Z161100000217141; Z161100000216137), the National Key Research and Development Program of China (2016YFC1306300), the National Basic Research Program of China (973 Program) (2012CB911004), the National Natural Science Foundation of China (NSFC 31270868), the Foundation of Chinese Academy of Sciences (CAS-20140909), and the Queensland-Chinese Academy of Sciences Biotechnology Fund (GJHZ201302). This project was also supported by grants from the National Natural Science Foundation of China (NSFC 81274093), Shandong Province Natural Science Foundation (ZR2015HL128), and Health Department of Shandong Province (2014WS0478).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

He, R. (2017). Effects of Formaldehyde on Protein (Tau) Aggregation and Cytotoxicity. In: Formaldehyde and Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1177-5_7

Download citation

Publish with us

Policies and ethics