Skip to main content

Abstract

This chapter deals with the modeling of epidemics with demographic age-structure. Apart from the dramatic family scenario described by Lucretius, showing that a disease such as the plague does not distinguish among ages, the importance of considering the age of the individuals in an epidemic model arises from the fact that, for many diseases, the rate of infection varies significantly with age.

Praeterea iam pastor et armentarius omnis

et robustus item curvi moderator aratri

languebat, penitusque casa contrusa iacebant

corpora paupertate et morbo dedita morti.

Exanimis pueris super examinata parentum

corpora nonnumquam posses retroque videre

matribus et patribus natos super edere vitam.

Lucretius, “De Rerum Natura”, Liber VI, 1252–1258

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Moreover, by now the shepherd and every herdsman, and likewise the sturdy steersman of the curving plough, would fall drooping, and their bodies would lie thrust together in the recess of a hut, given over to death by poverty and disease. On lifeless children you might often have seen the lifeless bodies of parents, and again, children breathing out their life upon mothers and fathers.

  2. 2.

    Note that if J is constant, i.e. J(t) ≡ J, then Ψ(a, t, a; J) = ψ(a, J).

References

  1. Anderson, R.M., May, R.M.: Vaccination against rubella and measles: quantitative investigations of different policies. J. Hyg. Camb. 90, 259–325 (1983)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M.: Age-related changes in the rate of disease transmission: implication for the designing of vaccination programs. J. Hyg. Camb. 94, 365–436 (1985)

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford UP, Oxford (1991)

    Google Scholar 

  4. Andreasen, V.: Disease regulation of age-structured host populations. Theor. Popul. Biol. 36, 214–239 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreasen, V.: The effect of age-dependent host mortality on the dynamics of an endemic disease. Math. Biosci. 114, 29–58 (1993)

    Article  MATH  Google Scholar 

  6. Andreasen, V.: Instability in an SIR-model with age-dependent susceptibility. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics, vol. 1, Theory of Epidemics, pp. 3–14. Wuerz Publ., Winnipeg (1995)

    Google Scholar 

  7. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40. Springer, New York (2000)

    Google Scholar 

  8. Brauer, F., van der Driessche, P., Wu, J. (eds.): Mathematical Epidemiology. Mathematical Biosciences Subseries. Lect. Notes in Math., vol. 1945. Springer, Berlin-Heidelberg (2008)

    Google Scholar 

  9. Busenberg, S., Cooke, K., Iannelli, M.: Endemic threshold and stability in a class of age-structured epidemic. SIAM J. Appl. Math. 48, 1379–1395 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Busenberg, S., Cooke, K., Iannelli, M.: Stability and thresholds in some age-structured epidemics. In: Castillo-Chavez, C., Levin, S., Shoemaker, C. (eds.) Lecture Notes in Biomathematics, vol. 81, pp. 124–141. Springer, Berlin-Heidelberg-New York (1989)

    Google Scholar 

  11. Busenberg, S., Iannelli, M., Thieme, H.R.: Global behaviour of an age-structured S-I-S epidemic model. SIAM J. Math. Anal. 22, 1065–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Busenberg, S., Iannelli, M., Thieme, H.R.: Dynamics of an age- structured epidemic model. In: Liao Shan-Tao, Ye Yan-Qian, Ding Tong-Ren (eds.) Dynamical Systems. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 4, pp. 1–19. World Scientific, Singapore (1993)

    Google Scholar 

  13. Busenberg, S., Cooke, K.: Vertically Transmitted Diseases: Models and Dynamics. Biomathematics, vol. 23. Springer, Berlin (1993)

    Google Scholar 

  14. Cha, Y., Iannelli, M., Milner, F.A.: Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model. Math. Biosci. 150, 177–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cha, Y., Iannelli, M., Milner, F.A.: Stability change of an epidemic model. Dyn. Syst. Appl. 9, 361–376 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Chipot, M.: On the equations of age-dependent population dynamics. Arch. Ration. Mech. Anal. 82, 13–26 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chipot, M., Iannelli, M., Pugliese, A.: Age Structured S-I-R Epidemic Model with Intra-cohort Transmission. In: Mathematical Population Dynamics: Analysis of Heterogeneity, vol. 1, Theory of Epidemics, pp. 51–65. Winnipeg, Wuerz (1995)

    Google Scholar 

  18. Diekmann, O., Heesterbeak, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dietz, K., Schenzle, D.: Proportionate mixing models for age-dependent infection transmission. J. Math. Biol. 22, 117–120 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, Z., Huang, W., Castillo-Chavez, C.: Global behavior of a multi-group SIS epidemic model with age structure. J. Differ. Equ. 218, 292–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, Z.: Applications of Epidemiological Models to Public Health Policymaking. The Role of Heterogeneity in Model Predictions. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  22. Feng, Z., Han, Q., Qui, Z., Hill, A.N., Glasser, J.W.: Computation of R in age-structured epidemiological models with maternal and temporary immunity. DCDSB 21, 399–415 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Franceschetti, A., Pugliese, A.: Threshold behaviour of a SIR epidemic model with age structure and immigration. J. Math. Biol. 57, 1–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Franceschetti, A., Pugliese, A., Breda, D.: Multiple endemic states age-structured SIR epidemic models. Math. Biosci. Eng. 9, 577–599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Greenhalgh, D.: Analytical results on the stability of age-structured recurrent epidemic models. IMA J. Math. Appl. Med. Biol. 4, 109–144 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Greenhalgh, D.: Threshold and stability results for an epidemic model with an age-structured meeting rate. IMA J. Math. Appl. Med. Biol. 5, 81–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Greenhalgh, D.: Existence, threshold and stability results for an age-structured epidemic model with vaccination and a non-separable transmission coefficient. Int. J. Syst. Sci. 24, 641–668 (1993)

    Article  MATH  Google Scholar 

  28. Heesterbeek, J.A.P.: R 0. PhD Thesis, Centrum voor Wiskunde en Informatica, Amsterdam (1992)

    Google Scholar 

  29. Hethcote, H.W.: Three basic epidemiological models. In: Levin, S.A., Hallam, T., Gross, L.J. (eds.) Applied Mathematical Ecology. Springer, New York (1989)

    Google Scholar 

  30. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hoppensteadt, F.: An age dependent epidemic model. J. Franklin Inst. 297, 325–333 (1974)

    Article  MATH  Google Scholar 

  32. Iannelli, M., Milner, F.A., Pugliese, A.: Analytical and numerical results for the age structured SIS epidemic model with mixed inter- intra-cohort transmission. SIAM J. Math. Anal. 23, 662–688 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iannelli, M., Martcheva, M.: Homogeneous dynamical systems and the age-structured SIR model with proportionate mixing incidence. In: Iannelli, M., Lumer, G. (eds.) Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Progress in Nonlinear Differential Equations and Their Applications, vol. 55, pp. 227–251. Birkhäuser, Basel-Boston-Berlin (2003)

    Google Scholar 

  34. Iannelli, M., Manfredi, P.: Demographic changes and immigration in age-structured epidemic models. Math. Popul. Stud. 14, 169–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Inaba, H.: Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Inaba. H.: Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete Contin. Dyn. Syst. Ser. B 6, 69–96 (2006)

    Google Scholar 

  37. Inaba, H.: Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. J. Math. Biol. 54, 101–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, New York (2017)

    Book  Google Scholar 

  39. Kuniya, T.: Global stability analysis with a discretization approach for an age-structured multigroup SIR epidemic model. Nonlinear Anal. RWA 12, 2640–2655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuniya, T., Inaba, H.: Endemic threshold results for age-structured SIS epidemic model with periodic parameters. J. Math. Anal. Appl. 402, 477–492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kuniya, T., Iannelli, M.: R0 and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Math. Biosci. Eng. 11, 929–945 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lafaye, T., Langlais, M.: Threshold methods for threshold models in age-dependent population dynamics and epidemiology. Calcolo 29, 49–79 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Langlais, M.: A mathematical analysis of the SIS intracohort model with age-structure. In: Arino, O., Axerod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of heterogeneities, vol. 1, pp. 103–117. Wuerz Publishing, Winnipeg (1995)

    Google Scholar 

  44. Langlais, M., Busenberg, S.: Global behavior in age-structured SIS models with seasonal periodicities and vertical transmission. J. Math. Anal. Appl. 213, 511–533 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Martcheva, M.: An Introduction to Mathematical Epidemiology. Texts in Applied Mathematics, vol. 61. Springer, New York (2015)

    Google Scholar 

  46. Schenzle, D.: An age structured model for pre and post-vaccination measles transmission. IMA J. Math. Appl. Biol. Med. 1, 169–191 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thieme, H.R.: Stability change for the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases. In: Differential Equation Models in Biology, Epidemiology and Ecology. Lectures Notes in Biomath., vol. 92, pp. 139–158. Springer, Berlin (1991)

    Google Scholar 

  48. Thieme, H.R.: Disease extinction and disease persistence in age structured epidemic models. Nonlinear Anal. 47, 6181–6194 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tudor, D.W.: An age-dependent epidemic model with applications to measles. Math. Biosci. 73, 131–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vogt Geisse, K., Alvey, C., Feng, Z.: Impact of age-dependent relapse and immunity on malaria dynamics. J. Biol. Syst. 21, 1340001 [49 pages] (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Iannelli, M., Milner, F. (2017). Epidemics and Demography. In: The Basic Approach to Age-Structured Population Dynamics. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1146-1_10

Download citation

Publish with us

Policies and ethics