The Brentanist Philosophy of Mathematics in Edmund Husserl’s Early Works

Chapter
Part of the Synthese Library book series (SYLI, volume 384)

Abstract

A common analysis of Edmund Husserl’s early works on the philosophy of logic and mathematics presents these writings as the result of a combination of two distinct strands of influence: on the one hand a mathematical influence due to his teachers is Berlin, such as Karl Weierstrass, and on the other hand a philosophical influence due to his later studies in Vienna with Franz Brentano. However, the formative influences on Husserl’s early philosophy cannot be so cleanly separated into a philosophical and a mathematical pathway. Growing evidence indicates that a Brentanist philosophy of mathematics was already in place before Husserl. Rather than an original combination at the confluence of two different streams, his early writings represent an elaboration of topics and problems that were already being discussed in the School of Brentano within a pre-existing framework. The traditional account understandably neglects Brentano’s own work on the philosophy of mathematics and logic, which can be found mostly in his unpublished manuscripts and lectures, and various works by Brentano’s students on the philosophy of mathematics which have only recently emerged from obscurity. Husserl’s early works must be correctly placed in this preceding context in order to be fully understood and correctly assessed.

Keywords

Franz Brentano Edmund Husserl School of Brentano Early phenomenology Philosophy of mathematics 

References

  1. L. Albertazzi, M. Libardi, R. Poli (eds.), The School of Franz Brentano (Kluwer, Dordrecht, 1996)Google Scholar
  2. B. Bolzano, Paradoxien des Unendlichen (Mayer & Müller, Berlin, 1889)Google Scholar
  3. F. Brentano, Psychologie vom empirischen Standpunkte (Duncker & Humblot, Leipzig, 1874)Google Scholar
  4. F. Brentano, Die elementare Logik und die in ihr nötigen Reformen I. Manuscript Y 2, Vienna 1884/85Google Scholar
  5. G. Cantor, Grundlagen einer allgemeinen Mannichfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen (Teubner, Leipzig, 1883)Google Scholar
  6. S. Centrone, Logic and Philosophy of Mathematics in the Early Husserl (Springer, Dordrecht, 2010)CrossRefGoogle Scholar
  7. R. Dedekind, Was sind und was sollen die Zahlen? (Vieweg & Sohn, Braunschweig, 1888)Google Scholar
  8. G. Frege, Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl (Koebner, Breslau, 1884)Google Scholar
  9. G.R. Haddock, Husserl’s relevance for the philosophy and foundations of mathematics. Axiomathes 1–3, 125–142 (1997)CrossRefGoogle Scholar
  10. G.R. Haddock, Husserl’s philosophy of mathematics: Its origin and relevance. Husserl Stud. 22, 193–222 (2006)CrossRefGoogle Scholar
  11. M. Hartimo, Mathematical roots of phenomenology: Husserl and the concept of number. Hist. Philos. Log. 27, 319–337 (2006)CrossRefGoogle Scholar
  12. A. Höfler, Besprechung von Kerry, ‘Über Anschauung und ihre psychische Verarbeitung’, Husserl, Philosophie der Arithmetik, von Ehrenfels, ‘Zur Philosophie der Mathematik’, Zeitschrift für Psychologie und Physiologie der Sinnesorgane VI (1894)Google Scholar
  13. E. Husserl, Beiträge zur Variationsrechnung, Vienna 1883, Unpublished dissertationGoogle Scholar
  14. E. Husserl, Über den Begriff der Zahl: Psychologische Analysen, Heynemann’sche Buchdruckerei (F. Beyer), Halle (1887)Google Scholar
  15. E. Husserl, Philosophie der Arithmetik. Psychologische und Logische Untersuchungen (C.E.M. Pfeffer (Robert Stricker), Halle, 1891)Google Scholar
  16. E. Husserl, Logische Untersuchungen. Erster Theil: Prolegomena zur Reinen Logik (Niemeyer, Halle, 1900)Google Scholar
  17. E. Husserl, Persönliche Aufzeichnungen. Philos. Phenomenol. Res. XVI, 293–302 (1956)CrossRefGoogle Scholar
  18. E. Husserl, in Philosophie der Arithmetik. Mit ergänzenden Texten (1890–1901), ed. by L. Eley Husserliana XII. (Nijhoff, Den Haag, 1970)Google Scholar
  19. E. Husserl, Studien zur Arithmetik und Geometrie, ed. by I. Strohmeyer Husserliana XXI (Nijhoff, Den Haag, 1983)Google Scholar
  20. E. Husserl, Briefwechsel. in Die Brentanoschule, vol. I, ed. by K. Schuhmann, E. Schuhmann (Kluwer, Dordrecht, 1994)Google Scholar
  21. E. Husserl, in Logik: Vorlesung 1896 ed. by E. Schuhmann, Husserliana, Materialienbände I. (Kluwer, Dordrecht, 2001)Google Scholar
  22. E. Husserl, in Logische Untersuchungen (Ergänzungsband: Erster Teil), ed. by U. Melle, Husserliana XX/1. (Kluwer, Dordrecht, 2002)Google Scholar
  23. E. Husserl, Lecture on the Concept of Number (WS 1889/90). C. Ierna (ed. & tr.), The new yearbook for phenomenology and phenomenological philosophy V (2005)Google Scholar
  24. C. Ierna, Husserl and the infinite. Studia phaenomenologica III No. 1–2 (2003), 179–194Google Scholar
  25. C. Ierna, The beginnings of Husserl’s Philosophy (Part 1: From Über den Begriff der Zahl to Philosophie der Arithmetik). The new yearbook for phenomenology and phenomenological philosophy V (2005), 1–56Google Scholar
  26. C. Ierna, The beginnings of Husserl’s Philosophy (Part 2: Philosophical and mathematical background). The new yearbook for phenomenology and phenomenological philosophy VI (2006), 23–71Google Scholar
  27. C. Ierna, Husserl et Stumpf sur la Gestalt et la fusion. Philosophiques 36(2), 489–510 (2009)CrossRefGoogle Scholar
  28. C. Ierna, Brentano and mathematics. Rev. Roum. Philos. 55(1), 149–167 (2011a)Google Scholar
  29. C. Ierna, Der Durchgang durch das Unmögliche. An Unpublished Manuscript from the Husserl-Archives. Husserl Stud. 27(3), 217–226 (2011b)CrossRefGoogle Scholar
  30. C. Ierna, La notion husserlienne de multiplicité : au-delà de Cantor et Riemann. Methodos 12 (2012)Google Scholar
  31. C. Ierna, Carl Stumpf’s philosophy of mathematics, in Philosophy from an Empirical Standpoint: Essays on Carl Stumpf, ed. by D. Fisette, R. Martinelli (Rodopi, Amsterdam, 2015)Google Scholar
  32. C. Ierna, On Christian von Ehrenfels’ Dissertation, Meinong Studies 8 (2017)Google Scholar
  33. M. Kline, Mathematical Thought, vol 1 (Oxford University Press, New York, 1972)Google Scholar
  34. L. Königsberger, Vorlesungen über die Theorie der elliptischen Functionen nebst einer Einleitung in die allgemeine Functionenlehre, vol 1 (Teubner, Leipzig, 1874)Google Scholar
  35. L. Kronecker, Über den Zahlbegriff. Crelle’s J. Reine Angew. Math. 101, 337–355 (1887)Google Scholar
  36. E. Mach, Beiträge zur Analyse der Empfindungen (Gustav Fischer, Jena, 1886)Google Scholar
  37. J. P. Miller, Numbers in Presence and Absence, Phaenomenologica 90 (Nijhoff, Den Haag, 1982)Google Scholar
  38. D. Moran, Introduction to Phenomenology (Routledge, London, 2000)CrossRefGoogle Scholar
  39. R. Rollinger, Husserl’s Position in the School of Brentano, Phaenomenologica 150 (Kluwer, Dordrecht, 1999)Google Scholar
  40. R. Rollinger, Brentano’s logic and Marty’s early philosophy of language. Brentano Studien XII, 77–98 (2009)Google Scholar
  41. K. Schuhmann, Husserl-Chronik (Denk- und Lebensweg Edmund Husserls) (Nijhoff, Den Haag, 1977)CrossRefGoogle Scholar
  42. K. Schuhmann, Malvine Husserls “Skizze eines Lebensbildes von E. Husserl”. Husserl-Studies 5, 105–125 (1988)CrossRefGoogle Scholar
  43. K. Schuhmann, Brentano’s impact on twentieth-century philosophy, in The Cambridge Companion to Brentano, ed. by D. Jacquette (Cambridge University Press, Cambridge, 2004), pp. 277–297Google Scholar
  44. E. Schuhmann, K. Schuhmann, Husserls Manuskripte zu seinem Göttinger Doppelvortrag von 1901. Husserl Stud. 17(2), 87–123 (2001)CrossRefGoogle Scholar
  45. H. R. Sepp (ed.), Edmund Husserl und die Phänomenologische Bewegung. Zeugnisse in Text und Bild (Alber, Freiburg München, 1988)Google Scholar
  46. D. Spalt, Die mathematischen und philosophischen Grundlagen des Weierstraßschen Zahlbegriffs zwischen Bolzano und Cantor. Arch. Hist. Exact Sci. 41(4), 311–362 (1991)Google Scholar
  47. C. Stumpf, Tonpsychologie, vol 1 (Hirzel, Leipzig, 1883)Google Scholar
  48. C. Stumpf, Tonpsychologie, vol 2 (Hirzel, Leipzig, 1890)Google Scholar
  49. C. Stumpf, Vorlesungen über Psychologie, manuscript Q 11/I, Halle WS 1886/87 (unpublished lecture notes)Google Scholar
  50. C. Stumpf, Logik und Enzyklopädie der Philosophie, manuscript Q 14, Halle SS 1887 (unpublished lecture notes)Google Scholar
  51. C. Stumpf, Erkenntnislehre (Barth, Leipzig, 1939)Google Scholar
  52. C. Stumpf, in Über die Grundsätze der Mathematik, ed by W. Ewen (Königshausen & Neumann, Würzburg, 2008)Google Scholar
  53. C. von Ehrenfels, Zur Philosophie der Mathematik. Vierteljahrsschrift für wissenschaftliche Philosophie 15, 285–347 (1891)Google Scholar
  54. C. von Ehrenfels’, Größenrelationen und Zahlen: eine psychologische Studie, ed. by C. Ierna, Meinong Studies 8 (2017)Google Scholar
  55. D. Willard, Logic and the Objectivity of Knowledge (Ohio University Press, Athens, 1984)Google Scholar
  56. K. Zindler, Beiträge zur Theorie der mathematischen Erkenntnis. Sitzungsberichte der Wiener Akademie. Philos-Histor. Abth., Bd. 118 (1889)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands
  2. 2.Institute of PhilosophyCzech Academy of the SciencesPragueCzech Republic

Personalised recommendations