Skip to main content

Crystal Growth and Morphology of Molecular Crystals

  • Chapter
  • First Online:

Abstract

Organic molecular crystals are often the main active ingredient in pharmaceutical drug products. The crystal morphology of these materials plays a significant role in their ease of separation from the mother solution phase, physical behaviour during downstream unit processes and their dissolution profiles and delivery of the active ingredient to the patient. Molecular modelling can be used to predict crystal morphologies, in terms of the strengths of their internal intermolecular interactions and their external crystallisation environment, hence providing a guide to the experimental conditions required to produce a pre-defined crystal morphology.

Here, the use of calculations of intermolecular interaction strength, nature and directionality in the prediction and analysis of morphologies is reviewed. These calculations are in terms of the intermolecular interactions within the crystal structure, along with the solute/solvent interactions at the crystal/solution interface, to predict an equilibrium morphology and habit modification that can be governed by the crystallisation solvent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MacLeod CS, Muller FL (2012) On the fracture of pharmaceutical needle-shaped crystals during pressure filtration: case studies and mechanistic understanding. Org Process Res Dev 16:425–434

    Article  CAS  Google Scholar 

  2. Roberts KJ, Sherwood JN, Yoon CS, Docherty R (1994) Understanding the solvent-induced habit modification of Benzophenone in terms of molecular recognition at the crystal/solution Interface. Chem Mater 6:1099–1102

    Article  CAS  Google Scholar 

  3. Ramachandran V, Halfpenny PJ, Roberts KJ (2017) Crystal science fundamentals, Chapter 1. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  4. ter Horst JH, Geertman RM, van Rosmalen GM (2001) The effect of solvent on crystal morphology. J Cryst Growth 230:277–284

    Article  Google Scholar 

  5. Hammond RB, Pencheva K, Ramachandran V, Roberts KJ (2007) Application of grid-based molecular methods for modeling solvent-dependent crystal growth morphology: aspirin crystallized from aqueous ethanolic solution. Cryst Grow Des 7:1571–1574

    Article  CAS  Google Scholar 

  6. Chen J, Trout BL (2010) Computer-aided solvent selection for improving the morphology of needle-like crystals: a case study of 2,6-Dihydroxybenzoic acid. Crystal Grow Des 10:4379–4388

    Article  CAS  Google Scholar 

  7. Hod I, Mastai Y, Medina DD (2011) Effect of solvents on the growth morphology of dl-alanine crystals. CrystEngComm 13:502–509

    Article  CAS  Google Scholar 

  8. Li Destri G, Marrazzo A, Rescifina A, Punzo F (2011) How molecular interactions affect crystal morphology: the case of haloperidol. J Pharm Sci 100:4896–4906

    Article  CAS  Google Scholar 

  9. Punzo F (2013) Unveiling the role of molecular interactions in crystal morphology prediction. J Mol Struct 1032:147–154

    Article  CAS  Google Scholar 

  10. Singh MK, Banerjee A (2013) Role of solvent and external growth environments to determine growth morphology of molecular crystals. Cryst Growth Des 13:2413–2425

    Article  CAS  Google Scholar 

  11. Bravais A (1886) Etudes Crystallographiques Gauthiers Villars, Paris

    Google Scholar 

  12. Friedel G (1907). Bulletin De La Societe Francaise De Mineralogie Et De Crystallographie 30:326

    Google Scholar 

  13. Donnay JDH, Harker D (1937) A new law of crystal morphology extending the law of bravais. Am Mineral 22:446–467

    CAS  Google Scholar 

  14. Volmer M, Weber A (1926) Germ-formation in oversaturated figures. Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre 119:277–301

    CAS  Google Scholar 

  15. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. I. Acta Crystallogr 8:49–52

    Article  CAS  Google Scholar 

  16. Hartman P, Bennema P (1980) The attachment energy as a habit controlling factor: I theoretical considerations. J Cryst Growth 49:145–156

    Article  CAS  Google Scholar 

  17. Bennema P, van der Eerden JP (1977) Crystal growth from solution: development in computer simulation. J Cryst Growth 42:201–213

    Article  CAS  Google Scholar 

  18. Human HJ, Van Der Eerden JP, Jetten LAMJ, Odekerken JGM (1981) On the roughening transition of biphenyl: transition of faceted to non-faceted growth of biphenyl for growth from different organic solvents and the melt. J Cryst Growth 51:589–600

    Article  CAS  Google Scholar 

  19. Davey R (1982) The role of additives in precipitation processes. In: Jancic SJ, de Jong EJ (eds) Industrial crystallization 81. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  20. Jetten LAMJ, Human HJ, Bennema P, Van Der Eerden JP (1984) On the observation of the roughening transition of organic crystals, growing from solution. J Cryst Growth 68:503–516

    Article  CAS  Google Scholar 

  21. Davey R (1986) The role of the solvent in crystal growth from solution. J Cryst Growth 76:637–644

    Article  CAS  Google Scholar 

  22. Jackson KA (1958) Mechanisms of growth. In: ASF M (ed) Liquid metals and solidification. American Society for Metals, Cleveland

    Google Scholar 

  23. Walker EM, Roberts KJ, Maginn SJ (1998) A molecular dynamics study of solvent and impurity interaction on the crystal habit surfaces of epsilon-caprolactam. Langmuir 14:5620–5630

    Article  CAS  Google Scholar 

  24. Winn D, Doherty MF (1998) A new technique for predicting the shape of solution-grown organic crystals. AICHE J 44:2501–2514

    Article  CAS  Google Scholar 

  25. Li J, Tilbury CJ, Joswiak MN, Peters B, Doherty MF (2016) Rate expressions for kink attachment and detachment during crystal growth. Cryst Growth Des 16:3313–3322

    Article  CAS  Google Scholar 

  26. Tilbury CJ, Green DA, Marshall WJ, Doherty MF (2016) Predicting the effect of solvent on the crystal habit of small organic molecules. Cryst Growth Des 16:2590–2604

    Article  CAS  Google Scholar 

  27. Docherty R, Clydesdale G, Roberts KJ, Bennema P (1991) Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising-models to predicting and understanding the morphology of molecular-crystals. J Phys D-Appl Phys 24:89–99

    Article  CAS  Google Scholar 

  28. Dowty E (1980) Computing and drawing crystal shapes. Am Mineral 65:465–472

    Google Scholar 

  29. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge structural database and visualizing crystal structures. Acta Crystallogr B 58:389–397

    Article  Google Scholar 

  30. Roberts KJ, Docherty R, Bennema P, Jetten L (1993) The importance of considering growth-induced conformational change in predicting the morphology of Benzophenone. J Phys D-Appl Phys 26:B7–B21

    Article  CAS  Google Scholar 

  31. Desiraju G, Vittal JJ, Ramanan A (1989) Crystal engineering: the design of organic Solids. Elsevier, Amsterdam

    Google Scholar 

  32. Desiraju GR (1995) Supramolecular Synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl 34:2311–2327

    Article  CAS  Google Scholar 

  33. Docherty R, Roberts KJ (1988) Modeling the morphology of molecular-crystals - application to Anthracene, biphenyl and Beta-succinic acid. J Cryst Growth 88:159–168

    Article  CAS  Google Scholar 

  34. Clydesdale G, Docherty R, Roberts KJ (1991) HABIT - a program for predicting the morphology of molecular crystals. Comput Phys Commun 64:311–328

    Article  CAS  Google Scholar 

  35. Etter MC (1991) Hydrogen bonds as design elements in organic chemistry. J Phys Chem 95:4601–4610

    Article  CAS  Google Scholar 

  36. Rosbottom I, Roberts KJ, Docherty R (2015) The solid state, surface and morphological properties of p-aminobenzoic acid in terms of the strength and directionality of its intermolecular synthons. CrystEngComm 17:5768–5788

    Article  CAS  Google Scholar 

  37. Kitaygorodsky A (1961) Interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron 14:230–236

    Article  Google Scholar 

  38. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125

    Google Scholar 

  39. Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev: Comput Mol Sci 1:211–228

    CAS  Google Scholar 

  40. Hammond RB (2017) Molecular Modelling Route Map, Chapter 6. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  41. Pickering J, Hammond RB, Ramachandran V, Soufian M, Roberts KJ (2017) Synthonic Engineering Modelling Tools for Product and Process Design, Chapter 11. In: Roberts KJ, Docherty R, Tamura R (eds) Engineering crystallography: from molecule to crystal to functional form Springer Advanced Study Institute (ASI) Series, 2017, in press

    Google Scholar 

  42. Roberts KJ, Hammond RB, Ramachandran V, Docherty R (2016) Synthonic engineering: from molecular and crystallographic structure to the rational design of pharmaceutical solid dosage forms. In: Abramov Y (ed) Computational approaches in pharmaceutical solid state chemistry. Wiley, New Jersey

    Google Scholar 

  43. Momany FA, Carruthers LM, McGuire RF, Scheraga HA (1974) Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem 78:1595–1620

    Article  CAS  Google Scholar 

  44. Lifson S, Hagler AT, Dauber P (1979) Consistent force-field studies of Inter-molecular forces in hydrogen-bonded crystals .1. Carboxylic-acids, amides, and the C=O...H- hydrogen-bonds. J Am Chem Soc 101:5111–5121

    Article  CAS  Google Scholar 

  45. Nemethy G, Pottle MS, Scheraga HA (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem 87:1883–1887

    Article  CAS  Google Scholar 

  46. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding - a generic force-field for molecular simulations. J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  47. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  48. Price SL, Wibley KS (1997) Predictions of crystal packings for uracil, 6-azauracil, and allopurinol: the interplay between hydrogen bonding and close packing. J Phys Chem A 101:2198–2206

    Article  CAS  Google Scholar 

  49. Gale JD, Henson NJ (1994) Derivation of interatomic potentials for Microporous Aluminophosphates from the structure and properties of Berlinite. J Am Chem Soc Faraday T 90:3175–3179

    Article  CAS  Google Scholar 

  50. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12:8478–8490

    Article  CAS  Google Scholar 

  51. Brunsteiner M, Price SL (2001) Morphologies of organic crystals: sensitivity of attachment energy predictions to the model intermolecular potential. Cryst Grow Des 1:447–453

    Article  CAS  Google Scholar 

  52. Ouvrard C, Price SL (2004) Toward crystal structure prediction for conformationally flexible molecules: the headaches illustrated by aspirin. Cryst Growth Des 4:1119–1127

    Article  CAS  Google Scholar 

  53. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS, Della Valle RG, Venuti E, Jose J, Gadre SR, Desiraju GR, Thakur TS, van Eijck BP, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Neumann MA, Leusen FJJ, Kendrick J, Price SL, Misquitta AJ, Karamertzanis PG, Welch GWA, Scheraga HA, Arnautova YA, Schmidt MU, van de Streek J, Wolf AK, Schweizer B (2009) Significant progress in predicting the crystal structures of small organic molecules - a report on the fourth blind test. Acta Crystallogr Sect B: Struct Sci Cryst Eng Mater 65:107–125

    Article  CAS  Google Scholar 

  54. Price SL (2009) Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc Chem Res 42:117–126

    Article  CAS  Google Scholar 

  55. Nguyen TTH, Rosbottom I, Hammond RB, Marziano I, Roberts KJ (2017) Crystal morphology and interfacial stability of RS-Ibuprofen in relation to its molecular and synthonic structure. Crystal Grow Des (Accepted)

    Google Scholar 

  56. Bunyan J, Shankland N, Sheen D (1991) Solvent effects on the morphology of ibuprofenAIChE Symposium Series, pp 44–54

    Google Scholar 

  57. Rosbottom I (2015) The influence of the intermolecular Synthons on the molecular aggregation, polymorphism, crystal growth and morphology of p-Aminobenzoic acid crystals from solution. School of Chemical and Process Engineering University of Leeds, Leeds

    Google Scholar 

  58. Docherty R, Roberts KJ, Dowty E (1988) Morang — a computer program designed to aid in the determinations of crystal morphology. Comput Phys Commun 51:423–430

    Article  Google Scholar 

  59. Olusanmi D, Roberts KJ, Ghadiri M, Ding Y (2011) The breakage behaviour of aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy. Int J Pharm 411:49–63

    Article  CAS  Google Scholar 

  60. Gracin S, Rasmuson ÅC (2004) Polymorphism and Crystallization of p-Aminobenzoic acid. Cryst Growth Des 4:1013–1023

    Article  CAS  Google Scholar 

  61. Sullivan RA, Davey RJ (2015) Concerning the crystal morphologies of the alpha and beta polymorphs of p-aminobenzoic acid. Cryst Eng Comm 17:1015–1023

    Article  CAS  Google Scholar 

  62. Toroz D, Rosbottom I, Turner TD, Corzo DMC, Hammond RB, Lai X, Roberts KJ (2015) Towards an understanding of the nucleation of alpha-para amino benzoic acid from ethanolic solutions: a multi-scale approach. Faraday Discuss 179:79–114

    Article  CAS  Google Scholar 

  63. Panina N, van de Ven R, Janssen FFBJ, Meekes H, Vlieg E, Deroover G (2009) Study of the needle-like morphologies of two beta-Phthalocyanines. Cryst Grow Des 9:840–847

    Article  CAS  Google Scholar 

  64. McArdle P, Hu Y, Lyons A, Dark R (2010) Predicting and understanding crystal morphology: the morphology of benzoic acid and the polymorphs of sulfathiazole. Cryst Eng Comm 12:3119–3125

    Article  CAS  Google Scholar 

  65. Lovette MA, Doherty MF (2013) Needle-shaped crystals: causality and solvent selection guidance based on periodic bond chains. Cryst Grow Des 13:3341–3352

    Article  CAS  Google Scholar 

  66. Walshe N, Crushell M, Karpinska J, Erxleben A, McArdle P (2015) Anisotropic crystal growth in flat and Nonflat systems: the important influence of van der Waals contact molecular stacking on crystal growth and dissolution. Crystal Grow Des 15:3235–3248

    Article  CAS  Google Scholar 

  67. Hammond RB, Pencheva K, Roberts KJ (2006) A Structural−kinetic approach to model face-specific solution/crystal surface energy associated with the Crystallization of acetyl salicylic acid from supersaturated aqueous/ethanol solution. Cryst Grow Des 6:1324–1334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rosbottom, I., Roberts, K.J. (2017). Crystal Growth and Morphology of Molecular Crystals. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_7

Download citation

Publish with us

Policies and ethics