Soft X-ray Radiation Applied in the Analysis of Intact Viruses and Antibodies by Means of Nano Electrospray Differential Mobility Analysis

  • Guenter AllmaierEmail author
  • Victor U. Weiss
  • Nicole Y. Engel
  • Martina Marchetti-Deschmann
  • Wladyslaw W. Szymanski
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


The analysis of an intact infectious virus and a therapeutic monoclonal antibody with a nano electrospray differential mobility analyzer, a kind of ion mobility device, (nES-DMA aka nES GEMMA, macroIMS or SMPS) incorporating a commercial soft X-ray (SXR) source for charge reduction was successfully demonstrated representing a clear alternative to a 210Po-based charge reducing source for bio nanoparticles. Not only bio nanoparticle detection and size determination will be shown with the SXR device but also particle number-based quantification demonstrated with an antibody. These achievements will open up new avenues in life sciences in general as well as in biomonitoring.



The authors acknowledge funding by the Austrian Science Foundation (FWF) TRP29. Furthermore we thank D. Blaas (Vienna, Austria) for supplying the virus samples and F. Foret (Brno, Czech Republic) for the help of designing the spray capillary tip grinding device.


  1. 1.
    Millikan RA (1913) On the elementary electrical charge and the Avogadro constant. Phys Rev 2:109–143CrossRefGoogle Scholar
  2. 2.
    Shimada M, Han B, Okuyama K, Otani Y (2002) Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer. J Chem Eng Jpn 35:78–793CrossRefGoogle Scholar
  3. 3.
    Kallinger P, Steiner G, Szymanski WW (2012) Characterization of four different bipolar charging devices for nanoparticle charge conditioning. J Nanopart Res 14:944–951CrossRefGoogle Scholar
  4. 4.
    Kallinger P, Szymanski WW (2015) Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5–40 nm. J Nanopart Res 17:171–182CrossRefGoogle Scholar
  5. 5.
    Yoon YH, Bong C, Kim DS (2015) Evaluation of the performance of a soft X-ray charger for the bipolar charging of nanoparticles. Particuology 18:165–169CrossRefGoogle Scholar
  6. 6.
    Kaufman SL, Skogen JW, Dorman FD, Zarrin F, Lewis KC (1996) Macromolecule analysis based on electrophoretic mobility in air: globular proteins. Anal Chem 68:1895–1904CrossRefGoogle Scholar
  7. 7.
    Bacher G, Szymanski WW, Kaufman SL, Zoellner P, Blaas D, Allmaier G (2001) Nano ESI with charge reduction combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spectrom 36:1038–1052CrossRefGoogle Scholar
  8. 8.
    Pease LF 3rd (2012) Physical analysis of virus particles using electrospray differential mobility analysis. Trends Biotechnol 30:216–224CrossRefGoogle Scholar
  9. 9.
    Laschober C, Wruss J, Blaas D, Szymanski WW, Allmaier G (2008) Gas Phase Electrophoretic Molecular Mobility Analysis (GEMMA) of size and stoichiometry of complexes of a common cold virus with antibody and soluble receptor molecules. Anal Chem 80:2261–2264CrossRefGoogle Scholar
  10. 10.
    Bereszczak JZ, Havlik M, Weiss VU, Marchetti-Deschmann M, van Duijn E, Watts NR, Wingfield PT, Allmaier G, Steven AC, Heck AJ (2014) Sizing up large protein complexes by electrospray ionization-based electrophoretic mobility and native mass spectrometry: morphology selective binding of Fabs to hepatitis B virus capsids. Anal Bioanal Chem 406:1437–1446CrossRefGoogle Scholar
  11. 11.
    Kaddis CS, Lomeli SH, Yin S, Berhane B, Apostol MI, Kickhoefer VA, Rome LH, Loo JA (2007) Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J Am Soc Mass Spectrom 18:1206–1216CrossRefGoogle Scholar
  12. 12.
    Weiss VU, Bereszcazk JZ, Havlik M, Kallinger P, Goessler I, Kumar M, Blaas D, Marchetti-Deschmann M, Heck AJ, Szymanski WW, Allmaier G (2015) Analysis of a common cold virus and its subviral particles by gas-phase electrophoretic mobility molecular analysis and native mass spectrometry. Anal Chem 87:8709–8717CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Tycova A, Prikryl J, Foret F (2015) Reproducible preparation of nanospray tips for capillary electrophoresis coupled to mass spectrometry using 3D printed grinding device. Electrophoresis 37:924–930CrossRefGoogle Scholar
  15. 15.
    Weiss VU, Subirats X, Kumar M, Harutyunyan S, Goessler I, Kowalski H, Blaas D (2015) Capillary electrophoresis, gas-phase electrophoretic mobility molecular analysis, and electron microscopy: effective tools for quality assessment and basic rhinovirus research. Methods Mol Biol 1221:101–128CrossRefGoogle Scholar
  16. 16.
    Weiss VU, Lehner A, Kerul L, Grombe R, Kratzmeier M, Marchetti-Deschmann M, Allmaier G (2013) Characterization of cross-linked gelatin nanoparticles by electrophoretic techniques in the liquid and the gas phase. Electrophoresis 34:3267–3276CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Guenter Allmaier
    • 1
    Email author
  • Victor U. Weiss
    • 1
  • Nicole Y. Engel
    • 1
  • Martina Marchetti-Deschmann
    • 1
  • Wladyslaw W. Szymanski
    • 2
  1. 1.Institute of Chemical Technology and AnalyticsVienna University of Technology (TU Wien)ViennaAustria
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations