Advertisement

Stripe Rust pp 601-630 | Cite as

Stripe Rust Research and Control: Conclusions and Perspectives

  • Xianming ChenEmail author
  • Zhensheng Kang

Abstract

Stripe rust is an old problem in world production of wheat and barley. Great progress has been made in understanding the pathogen, the hosts and the disease, especially the pathogen biology, host resistance and epidemiology of the disease. Now, it is clear that Puccinia striiformis has a macrocyclic lifecycle, but mainly reproduces through the asexual cycle. A large number of cereal germplasms and genes for different types of resistance to stripe rust have been identified and used in breeding programs for developing resistant cultivars. At the same time, more fungicides with different modes of action have become available for use to control stripe rust. Nowadays, growers are able to reduce potentially very high yield losses to minimal with an integrated control approach combining cultivar resistance, appropriate use of fungicide and suitable cultural practices. However, there are still many challenges for control of stripe rust. For example, the role of alternate hosts and auxiliary grass hosts in developing stripe rust epidemics and generating pathogen variation is not clear in many regions of the world. Stripe rust resistance has not received adequate efforts in breeding programs in many countries or regions due to various reasons. Chemical control has not become a practical option for growers in many developing countries. Although tremendous progress has been made in research on the genome, functional genomics and marker development for monitoring the pathogen populations, none of the P. striiformis avirulence genes have been cloned and molecularly characterized. Putting these challenges into consideration and research, more progress will likely be made in these areas in the next 10–20 years. Ultimately, the devastating disease can be put under control more effectively.

Keywords

Avirulence Barley Disease control Disease resistance Functional genomics Genome Puccinia striiformis Stripe rust Wheat Yellow rust 

References

  1. Abbasi M, Hedjaroude G, Scholler M, Goodwin SB. Taxonomy of Puccinia striiformis s.l. in Iran. Rostaniha. 2004;5:71–82, 199–224.Google Scholar
  2. Agenbag GM, Pretorius ZA, Boyd LA, Bender CM, MacCormack R, Prins R. High-resolution mapping and new marker development for adult plant stripe rust resistance QTL in the wheat cultivar Kariega. Mol Breed. 2014;34:2005–20.Google Scholar
  3. Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog. 2014a;10:e1003903.PubMedPubMedCentralGoogle Scholar
  4. Ali S, Gladieux P, Rahman H, Saqib MS, Fiaz M, Ahmed H, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f. sp. tritici. Mol Ecol. 2014b;23:603–17.PubMedGoogle Scholar
  5. Ayliffe M, Singh R, Lagudah E. Durable resistance to wheat stem rust needed. Curr Opin Plant Biol. 2008;11:187–92.PubMedGoogle Scholar
  6. Bahri B, Leconte M, de Vallavieille-Pope C, Enjalbert J. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f.sp. tritici. Conserv Genet. 2009a;10:1425–8.Google Scholar
  7. Bahri B, Leconte M, Ouffroukh A, de Vallavieille-Pope C, Enjalbert J. Geographic limits of a clonal population of wheat yellow rust in the Mediterranean region. Mol Ecol. 2009b;18:4165–79.PubMedGoogle Scholar
  8. Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed. 2014;33:51–9.Google Scholar
  9. Barakate A, Stephens J. An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant−pathogen interactions for better crop protection. Front Plant Sci. 2016;7:765.PubMedPubMedCentralGoogle Scholar
  10. Barnes CW, Szabo LJ. Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology. 2007;97:717–27.PubMedGoogle Scholar
  11. Basnet BR, Ibrahim AMH, Chen XM, Singh RP, Mason ER, Bowden RL, Liu SY, Devkota RN, Subramanian NK, Rudd JC. Molecular mapping of stripe rust resistance QTL in hard red winter wheat TAM 111 adapted in the US high plains. Crop Sci. 2014a;54:1361–73.Google Scholar
  12. Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC. Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed. 2014b;33:385–99.Google Scholar
  13. Berlin A, Djurle A, Samils B, Yuen J. Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology. 2012;102:1006–12.PubMedGoogle Scholar
  14. Bever WM. Physiologic specialization in Puccinia glumerum in the United States. Phytopathology. 1934;24:686–8.Google Scholar
  15. Biffen RH. Mendel’s law of inheritance and wheat breeding. J Agric Sci. 1905;1:4–48.Google Scholar
  16. Buerstmayr M, Matiasch L, Mascher F, Vida G, Ittu M, Robert O, Holdgate S, Flath K, Neumayer A, Buerstmayr H. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor Appl Genet. 2014;127:2011–28.PubMedPubMedCentralGoogle Scholar
  17. Bulli P, Zhang JL, Chao SM, Chen XM, Pumphrey M. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3: Genes. Genomes Genet. 2016;6:2237–53.Google Scholar
  18. Calvo-Salazar V, Singh RP, Huerta-Espino J, Cruz-Izquierdo S, Lobato-Ortiz R, Sandoval-Islas S, Vargas-Hernández M, German S, Silva P, Basnet BR, Lan CX, Herrera-Foessel SA. Genetic analysis of resistance to leaf rust and yellow rust in spring wheat cultivar Kenya Kongoni. Plant Dis. 2015;99:1153–60.Google Scholar
  19. Cantu D, Govindarajulu M, Kozik A, Wang MN, Chen XM, Kojima K, Jurka J, Michelmore RW, Dubcovsky J. Next generation sequencing provides rapid access to the genome of wheat stripe rust. PLoS One. 2011;8:e24230.Google Scholar
  20. Cantu D, Segovia V, MacLean D, Bayles R, Chen XM, Kamoun S, Dubcovsky J, Saunders DGO, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics. 2013:14:270Google Scholar
  21. Case A, Naruoka Y, Chen XM, Garland-Campbell KA, Zemetra RS, Carter AH. Mapping stripe rust resistance genes in a Brundage x Coda winter wheat recombinant inbred line population. PLoS One. 2014;9:e91758.PubMedPubMedCentralGoogle Scholar
  22. Castro AJ, Chen XM, Hayes PM, Knapp SJ, Line RF, Toojinda T, Vivar H. Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci. 2002;42:1701–8.Google Scholar
  23. Castro AJ, Chen XM, Corey A, Filichkina T, Hayes PM, Mundt C, Richardson K, Sandoval-Islas S, Vivar H. Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: Effects on adult plant resistance. Crop Sci. 2003;43:2234–9.Google Scholar
  24. Chen XM. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol. 2005;27:314–37.Google Scholar
  25. Chen XM. Challenges and solutions for stripe rust control in the United States. Aust J Agric Res. 2007;58:648–55.Google Scholar
  26. Chen XM. High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci. 2013;4:608–27.Google Scholar
  27. Chen XM. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol. 2014;36:311–26.Google Scholar
  28. Chen XM, Line RF. Identification of stripe rust resistance genes in wheat cultivars used to differentiate North American races of Puccinia striiformis. Phytopathology. 1992;82:1428–34.Google Scholar
  29. Chen XM, Line RF. Recessive genes for resistance to races of Puccinia striiformis f. sp. hordei in barley. Phytopathology. 1999;89:226–32.PubMedGoogle Scholar
  30. Chen XM, Line RF. Identification of genes for resistance to Puccinia striiformis f. sp. hordei in 18 barley genotypes. Euphytica. 2003;129:127–45.Google Scholar
  31. Chen XM, Line RF, Leung H. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology. 1993;83:1489–97.Google Scholar
  32. Chen XM, Line RF, Leung H. Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology. 1995;85:1335–42.Google Scholar
  33. Chen XM, Moore MK, Milus EA, Long DL, Line RF, Marshall D, Jackson L. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis. 2002;86:39–46.Google Scholar
  34. Chen CQ, Zheng WM, Buchenauer H, Huang LL, Lu NH, Kang ZS. Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f. sp. tritici. Mol Ecol Resour. 2009a;9:236–8.PubMedGoogle Scholar
  35. Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT. Pathotype dynamics, diversity and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe (yellow) rust in China from 2003 to 2007. Plant Dis. 2009b;93:1093–101.Google Scholar
  36. Chen XM, Penman L, Wan AM, Cheng P. Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol. 2010;32:315–23.Google Scholar
  37. Chen XM, Coram T, Huang XL, Wang MN, Dolezal A. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Curr Genomics. 2013;14:111–26.PubMedPubMedCentralGoogle Scholar
  38. Cheng P, Chen XM. Virulence and molecular analyses support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology. 2014;104:1208–20.PubMedGoogle Scholar
  39. Cheng P, Chen XM, Xu LS, See DR. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Ecol Resour. 2012;12:779–81.PubMedGoogle Scholar
  40. Cheng P, Xu LS, Wang MN, See DR, Chen XM. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet. 2014;127:2267–77.PubMedGoogle Scholar
  41. Cheng P, Chen XM, See D. Grass hosts harbor more diverse isolates of Puccinia striiformis than cereal crops. Phytopathology. 2016;106:362–71.PubMedGoogle Scholar
  42. Christopher MD, Liu SY, Hall MD, Marshall DS, Fountain MO, Johnson JW, Milus EA, Garland-Campbell KA, Chen XM, Griffey CA. Identification and mapping of adult plant stripe rust resistance in soft red winter wheat cultivar ‘USG 3555’. Plant Breed. 2013a;132:53–60.Google Scholar
  43. Christopher MD, Liu SY, Hall MD, Marshall DS, Fountain MO, Johnson JW, Milus EA, Garland-Campbell KA, Chen XM, Griffey CA. Identification and mapping of adult plant stripe rust resistance in soft red winter wheat VA00W-38. Crop Sci. 2013b;53:871–9.Google Scholar
  44. Coram TE, Brown-Guedira G, Chen XM. Using transcriptomics to understand the wheat genome. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2008a;3. No. 083Google Scholar
  45. Coram TE, Settles ML, Chen XM Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008b;9:479–493Google Scholar
  46. Coram TE, Settles ML, Wang MN, Chen XM. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus. Theor Appl Genet. 2008c;117:401–11.PubMedGoogle Scholar
  47. Coram TE, Settles ML, Chen XM. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip wheat genome array. BMC Genomics. 2009;10:253–64.PubMedPubMedCentralGoogle Scholar
  48. Coram TE, Huang XL, Zhan GM, Settles ML, Chen XM. Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Funct Integ Genome. 2010;10:383–92.Google Scholar
  49. Cummins GB, Stevenson JA. A check list of North American rust fungi (Uredinales). Plant Dis Rep Suppl. 1956;240:109–93.Google Scholar
  50. Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D, Linning R, Sakthikumar S, Song X, Adiconis X, Fan L, Goldberg JM, Levin JZ, Young S, Zeng QD, Anikster Y, Bruce M, Wang MN, Yin CT, McCallum B, Szabo LJ, Hulbert S, Chen XM, Fellers JP. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. 3G: Genes Genomes. Genomics. 2017;7:371–6.Google Scholar
  51. Dawson AM, Ferguson JN, Gardiner M, Green P, Hubbard A, Moscou MJ. Isolation and fine mapping of Rps6: an intermediate host resistance gene in barley to wheat stripe rust. Theor Appl Genet. 2016;129:831–43.PubMedPubMedCentralGoogle Scholar
  52. Derevnina L, Zhou MX, Singh D, Wellings CR, Park RF. The genetic basis of resistance to barley grass yellow rust (Puccinia striiformis f. sp. pseudo-hordei) in Australian barley cultivars. Theor Appl Genet. 2015;128:187–97.PubMedGoogle Scholar
  53. Dobon A, Bunting DCE, Cabrera-Quio LE, Uauy C, Saunders DGO. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics. 2016;17:380.PubMedPubMedCentralGoogle Scholar
  54. Dracatos PM, Zhang P, Park RF, McIntosh RA, Wellings CR. Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust. Theor Appl Genet. 2016;129:65–76.PubMedGoogle Scholar
  55. Duan X, Tellier A, Wan A, Leconte M, de Vallavieille-Pope C, Enjalbert J. Puccinia striiformis f.sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia. 2010;102:44–53.PubMedGoogle Scholar
  56. Duan XY, Wang XJ, Fu YP, Tang CL, Li XR, Cheng YL, Feng H, Huang LL, Kang ZS. TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat–stripe rust fungus interaction. Mol Plant Pathol. 2013;14:728–39.PubMedGoogle Scholar
  57. Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. The past, present and future of breeding rust resistant wheat. Front Plant Sci. 2014;5:641.PubMedPubMedCentralGoogle Scholar
  58. Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 2015;56:41–7.Google Scholar
  59. Enjalbert J, Duan X, Giraud T, Vautrin D, de Vallavieille-Pope C, Solignac M. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f.sp. tritici. Mol Ecol Notes. 2002;2:563–5.Google Scholar
  60. Enjalbert J, Duan X, Leconte M, Hovmøller MS, de Vallavieille-Pope C. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Mol Ecol. 2005;14:2065–73.PubMedGoogle Scholar
  61. Eriksson J. Über die Spezialisierung des Parasitsimus bei den Getreiderostpilzen. Ber Dtsch Bot Ges. 1894;12:292–331.Google Scholar
  62. Eriksson J, Henning E. Die getreideroste. Stockholm: Norstedt & Söner; 1896.Google Scholar
  63. Feng H, Wang XM, Sun YF, Wang XJ, Chen XM, Guo J, Duan YH, Huang LL, Kang ZS. Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses. Mol Biol Rep. 2011;38:3857–66.PubMedGoogle Scholar
  64. Feng H, Zhang Q, Li HY, Wang XJ, Wang XD, Duan XY, Wang B, Kang ZS. vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of tae-Myb3 expression. Plant Physiol Biochem. 2013a;68:90–5.PubMedGoogle Scholar
  65. Feng H, Zhang Q, Wang QL, Wang XJ, Liu J, Li M, Huang LL, Kang ZS. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol Biol. 2013b;83:433–43.PubMedGoogle Scholar
  66. Feng JY, Chen GY, Wei YM, Liu YX, Jiang QT, Li W, Pu ZE, Lan XJ, Dai SF, Zheng YL. Identification and genetic mapping of a recessive gene for resistance to stripe rust in wheat line LM168-1. Mol Breed. 2014;33:601–9.Google Scholar
  67. Feng JY, Wang MN, Chen XM, See DR, Zheng YL, Chao SM, Wan AM. Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology. 2015;105:1206–13.PubMedGoogle Scholar
  68. Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323:1357–60.PubMedPubMedCentralGoogle Scholar
  69. Fu YP, Duan XY, Tang CL, Li XR, Voegele RT, Wang XJ, Wei GR, Kang ZS. TaADF7, an actin-depolymerizing factor, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Plant J. 2014;78:16–30.PubMedGoogle Scholar
  70. Gao L, Yu HX, Shen HM, Li C, Liu TG, Liu B, Kang XH, Chen WQ. Development of SCAR markers and an SYBR green assay to detect Puccinia striiformis f. sp. tritici in infected wheat leaves. Plant Dis. 2015;100:1840–7.Google Scholar
  71. Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS One. 2013;8:e67150.PubMedPubMedCentralGoogle Scholar
  72. Gottula J, Fuchs M. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Adv Virus Res. 2009;75:161–83.PubMedGoogle Scholar
  73. Gou JY, Li K, Wu KT, Wang XD, Lin HQ, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sánchez J, Fu DL, Blechl A, Wallington E, Fahima T, Meeta M, Epstein L, Dubcovsky J. Wheat stripe rust resistance protein wks1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell. 2015;27:1755–70.PubMedPubMedCentralGoogle Scholar
  74. Hakim MS, Mamluk OF. Virulence of wheat yellow rust pathogen in Syria and Lebanon. In: Proceedings of European mediterranean cereal rusts powdery mildews conference 9:141. 1996.Google Scholar
  75. Herrera-Foessel SA, Singh RP, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan CX, Calvo-Salazar V, Lagudah ES. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet. 2014;127:781–9.PubMedGoogle Scholar
  76. Herrera-Foessel SA, Singh RP, Lan CX, Huerta-Espino J, Calvo-Salazar V, Bansal UK, Bariana HS, Lagudah ES. Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Dis. 2015;99:508–11.Google Scholar
  77. Holtz MD, Kumar K, Zantinge JL, Xi K. Genetic diversity of Puccinia striiformis from cereals in Alberta. Can Plant Pathol. 2014;63:415–24.Google Scholar
  78. Hou L, Chen XM, Wang MN, See DR, Chao SM, Bulli P, Jing JX. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS One. 2015;10:e0126794.PubMedPubMedCentralGoogle Scholar
  79. Hou LY, Jia JQ, Zhang XJ, Li X, Yang ZJ, Ma J, Guo HJ, Zhan HX, Qiao LY, Chang ZJ. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis. 2016;100:1717–24.Google Scholar
  80. Hovmøller MS, Justesen AF. Rates of evolution of avirulence phenotypes and DNA markers in a northwest European population of Puccinia striiformis f. sp. tritici. Mol Ecol. 2007;16:4637–47.PubMedGoogle Scholar
  81. Hovmøller MS, Justesen AF, Brown JKM. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in north-west Europe. Plant Pathol. 2002;51:24–32.Google Scholar
  82. Hovmøller MS, Yahyaoui AH, Miles EA, Justesen AF. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol. 2008;17:3818–26.PubMedGoogle Scholar
  83. Hovmøller MS, Walter S, Bayles R, Hubbard A, Flath K, Sommerfieldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016;65:402–11.Google Scholar
  84. Huang XL, Ma JB, Chen XM, Wang XJ, Ding K, Han DJ, Qu ZP, Huang LL, Kang ZS. Genes involved in adult plant resistance to stripe rust in wheat cultivar Xingzi 9104. Physiol Mol Plant Pathol. 2013;81:26–32.Google Scholar
  85. Huang Q, Li X, Chen WQ, Xiang ZP, Zhong SF, Chang ZJ, Zhang M, Zhang HY, Tan FQ, Ren ZL, Luo PG. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet. 2014;127:843–53.PubMedGoogle Scholar
  86. Huang L, Sela H, Feng LH, Chen QJ, Krugman T, Yan J, Dubcovsky J, Fahima T. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. Theor Appl Genet. 2016;129:921–34.PubMedGoogle Scholar
  87. Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015;16:23.PubMedPubMedCentralGoogle Scholar
  88. Hulbert SH, Pumphrey M. A time for more booms and less busts? Unraveling cereal-rust interactions. MPMI. 2014;27:207–14.PubMedGoogle Scholar
  89. Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL. Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18. Phytopathology. 2007;97:1083–93.PubMedGoogle Scholar
  90. Hylander N, Jørstad I, Nannfeldt JA. Enumeratio uredionearum Scandinavicarum. Opera Bot. 1953;1:1–102.Google Scholar
  91. Jiang ZN, Ge S, Xing LP, Han DJ, Kang ZS, Zhang GQ, Wang XJ, Wang X, Chen PD, Cao AZ. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. J Exp Bot. 2013;64:3735–46.PubMedPubMedCentralGoogle Scholar
  92. Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet. 2015;128:1277–95.PubMedGoogle Scholar
  93. Jin Y, Szabo LJ, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology. 2010;100:432–5.PubMedGoogle Scholar
  94. Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M. Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS One. 2015;10:e0129580.PubMedPubMedCentralGoogle Scholar
  95. Klarquist EF, Chen XM, Carter AH. Novel QTL for stripe rust resistance on chromosomes 4A and 6B in soft white winter wheat cultivars. Agronomy. 2016;6:4.Google Scholar
  96. Klindworth DL, Hareland GA, Elias EM, Xu SS. Attempted compensation for linkage drag affecting agronomic characteristics of durum wheat 1AS/1DL translocation lines. Crop Sci. 2013;53:422–9.Google Scholar
  97. Klos KE, Gordon T, Bregitzer P, Hayes P, Chen XM, del Blanco IA, Fisk S, Bonman JM. Barley stripe rust resistance QTL: development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei. Phytopathology. 2016;106:1344–51.Google Scholar
  98. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323:1360–3.PubMedGoogle Scholar
  99. Krattinger SG, Sucher J, Selter LL, Chauhan H, Zhou B, Tang M, Upadhyaya NM, Mieulet D, Guiderdoni E, Weidenbach D, Schaffrath U, Lagudah ES, Keller B. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol J. 2016;14:1261–8.PubMedGoogle Scholar
  100. Kumar J, Nayar SK, Prashar M, Bhardwaj SC, Bhatnagar R. Virulence survey of Puccinia striiformis West in India during 1988-1989. Int Trop Plant Dis. 1993;11:79–83.Google Scholar
  101. Lan CX, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, Zhang YL, Yang EN. QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol Breed. 2014;34:789–803.Google Scholar
  102. Lan CX, Zhang YL, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet. 2015;128:549–61.PubMedGoogle Scholar
  103. Li ZQ, Zeng SM. Wheat rusts in China. Beijing: China Agricultural Press; 2002. p. 379.Google Scholar
  104. Li ZF, Singh S, Singh RP, López-Vera EE, Huerta-Espino J. Genetics of resistance to yellow rust in PBW343 × Kenya Kudu recombinant inbred line population and mapping of a new resistance gene YrKK. Mol Breed. 2013;32:821–9.Google Scholar
  105. Li HH, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics. 2015;16:216.PubMedPubMedCentralGoogle Scholar
  106. Li K, Hegarty J, Zhang CZ, Wan AM, Wu JJ, Brown-Guedira GL, Chen XM, Fu DL, Dubcovsky J. Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. Theor Appl Genet. 2016a;129:845–59.PubMedPubMedCentralGoogle Scholar
  107. Li H, Ren B, Kang ZS, Huang LL. Comparison of cell death and accumulation of reactive oxygen species in wheat lines with or without Yr36 responding to Puccinia striiformis f. sp. tritici under low and high temperatures at seedling and adult-plant stages. Protoplasms. 2016b;253:787–802.Google Scholar
  108. Liang JM, Liu XF, Li Y, Wan Q, Ma ZH, Luo Y. Population genetic structure and the migration of Puccinia striiformis f. sp. tritici between the Gansu and Sichuan Basin populations of China. Phytopathology. 2016;106:192–201.PubMedGoogle Scholar
  109. Lin F, Chen XM. Genetics and molecular mapping of genes for race-specific all stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet. 2007;114:1277–87.PubMedGoogle Scholar
  110. Line RF. Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol. 2002;40:75–118.PubMedGoogle Scholar
  111. Line RF, Qayoum A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Dep Agric Agric Res Serv Tech Bull. 1992;1788:44 pp.Google Scholar
  112. Liu M, Hambleton S. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol. 2010;114:881–99.PubMedGoogle Scholar
  113. Liu F, Guo J, Bai P, Duan Y, Wang X, Cheng Y, Feng H, Huang LL, Kang ZS. Wheat TaRab7 GTPase is part of the signaling pathway in responses to stripe rust and abiotic stimuli. PLoS One. 2012a;7:e37146.PubMedPubMedCentralGoogle Scholar
  114. Liu B, Chen XM, Kang ZS. Gene sequences reveal heterokaryotic variations and evolutionary mechanisms in Puccinia striiformis, the stripe rust pathogen. Open J Genom. 2012b;1:1–14.Google Scholar
  115. Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X, Jia JQ, Zhan HX, Guo HJ, Wang JM. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet. 2013;126:265–74.PubMedGoogle Scholar
  116. Liu W, Frickb M, Huel R, Nykiforuk CL, Wang XM, Gaudet GA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang ZS, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC–NBS–LRR sequence in wheat. Mol Plant. 2014;7:1740–55.PubMedGoogle Scholar
  117. Liu CH, Pedersen C, Schultz-Larsen T, Aguilar GB, Madriz-Ordeñana K, Hovmøller MS, Thordal-Christensen H. The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytol. 2016; doi: 10.1111/nph.14034.Google Scholar
  118. Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 2015;169:971–85.Google Scholar
  119. Lu NH, Zhan GM, Chen XM, Wang JF, Huang LL, Kang ZS. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in the Northwest China. Eur J Plant Pathol. 2011;131:685–93.Google Scholar
  120. Lu Y, Wang MN, Chen XM, See DR, Chao SM, Jing JX. Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet. 2014;127:1449–59.PubMedGoogle Scholar
  121. Lupton FGH, Macer RCF. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Trans Br Mycol Soc. 1962;45:21–45.Google Scholar
  122. Ma H, Singh RP, Mujeebkazi A. Suppression expression of resistance to stripe rust in hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica. 1995;83:87–93.Google Scholar
  123. Ma DF, Zhou XL, Hou L, Bai YB, Li Q, Wang HG, Tang MS, Jing JX. Genetic analysis and molecular mapping of a stripe rust resistance gene derived from Psathynrostachys huashanica Keng in wheat line H9014-121-5-5-9. Mol Breed. 2013;32:365–72.Google Scholar
  124. Ma DF, Li Q, Tang MS, Chao KX, Li JC, Wang BT, Jing JX. Mapping of gene conferring adult-plant resistance to stripe rust in Chinese wheat landrace Baidatou. Mol Breed. 2015;35:157.Google Scholar
  125. Ma LJ, Kong XY, Qiao JX, An F, Hu XP, Xu XM. Overwintering of Puccinia striiformis f. sp. tritici on winter wheat at varying altitudes in Gansu and Qinghai Provinces. Plant Dis. 2016;100:1138–45.Google Scholar
  126. Maccaferri M, Zhang JL, Bulli P, Abate Z, Chao SM, Cantu D, Bossolini E, Chen XM, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). 3G: Genes Genomics. Genetics. 2015;5:449–65.Google Scholar
  127. Manners JG. Puccinia striiformis Westend. var. dactylidis var. nov. Trans Br Mycol Soc. 1960;43:65–8.Google Scholar
  128. Mboup M, Leconte M, Gautier A, Wan AM, Chen W, de Vallavieille-Pope C, Enjalbert J. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Genet Biol. 2009;46:299–307.PubMedGoogle Scholar
  129. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC. Catalogue of gene symbols for wheat. In: 12th international wheat genetics symposium, 8–13 Sep 2013, Yokohama, Japan. 2013. Online: http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp
  130. Milus EA, Seyran E. Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the South-Central United States. Plant Dis. 2006;90:847–52.Google Scholar
  131. Milus EA, Kristensen K, Hovmøller MS. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology. 2009;99:89–94.PubMedGoogle Scholar
  132. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong XY, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genet. 2015;47:1494–8.Google Scholar
  133. Naruoka Y, Garland-Campbell KA, Carter AH. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theor Appl Genet. 2015;128:1083–101.PubMedGoogle Scholar
  134. Newton M, Johnson T, Brown AM. Stripe rust in Canada. Phytopathology. 1933;23:25–6.Google Scholar
  135. Niu YC, Li ZQ, Shang HS. Puccinia striiformis West. f. sp. leymi and f. sp. elymi, two new formae speciales. Acta Univ Agric Boreali-Occident. 1991;19:58–62.Google Scholar
  136. Pahalawatta V, Chen XM. Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Phytopathology. 2005a;95:427–32.PubMedGoogle Scholar
  137. Pahalawatta V, Chen XM. Inheritance and molecular mapping of barley genes conferring resistance to wheat stripe rust. Phytopathology. 2005b;95:884–9.PubMedGoogle Scholar
  138. Patpour M, Hovmøller MS, Justesen AF, Newcomb M, Olivera P, Jin Y, Szabo LJ, Hodson D, Shahin AA, Wanyera R, Habarurema I, Wobibi S. Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa. Plant Dis. 2016;100:522.Google Scholar
  139. Pei HC, Sun QX, Hao QQ, Lv B, Wu JJ, Fu DL. The HSP90-RAR1-SGT1 based protein interactome in barley and stripe rust. Physiol Mol Plant Pathol. 2015;91:11–9.Google Scholar
  140. Prasada R, Joshi LM, Singh SD, Misra DF, Goel LB, Kumari K, Sharma SK, Josh PC, Ahmad ST. Occurrence of physiological races of wheat and barley rusts in India during 1962-64 and their sources of resistance. Indian J Agric Sci. 1967;37:273–81.Google Scholar
  141. Rabinovich SV. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica. 1998;100:323–40.Google Scholar
  142. Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet. 2014;127:317–24.PubMedGoogle Scholar
  143. Randhawa MS, Bariana HS, Mago R, Bansal UK. Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed. 2015;35:65.Google Scholar
  144. Ren RS, Wang MN, Chen XM, Zhang ZJ. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet. 2012;125:847–57.PubMedGoogle Scholar
  145. Ren Y, Li S, Xia X, Zhou Q, He Y, Wei Y, Zheng Y, He Z. Molecular mapping of a recessive stripe rust resistance gene yrMY37 in Chinese wheat cultivar Mianmai 37. Mol Breed. 2015a;35:97.Google Scholar
  146. Ren Y, Li SR, Wei YM, Zhou Q, Du XY, He YJ, Zheng YL. Molecular mapping of a stripe rust resistance gene in Chinese wheat cultivar Mianmai 41. J Integr Agric. 2015b;14:295–304.Google Scholar
  147. Risk JM, Selter LL, Krattinger SG, Viccars LA, Richardson TM, Buesing G, Herren G, Lagudah ES, Keller B. Functional variability of the Lr34 durable resistance gene in transgenic wheat. Plant Biotech J. 2012;10:477–87.Google Scholar
  148. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH. Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet. 2013;126:2427–49.PubMedPubMedCentralGoogle Scholar
  149. Saari EE.The Yr9 virulence factor in Puccinia striiformis and South Asia: coevolution or migration from a distant place. In: Proceedings of European mediterranean cereal rusts powdery mildews conference 9:142. 1996.Google Scholar
  150. Saunders DGO, Cantu D, Segovia V, MacLean D, Bayles R, Chen XM, Kamoun S, Dubcovsky J, Uauy C. Genome analyses of the wheat stripe (yellow) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. Page 114 in Abstracts of BGRI 2013 technical workshop, 19–22 Aug, New Delhi, India. 2013.Google Scholar
  151. Sharma-Poudyal D, Chen XM. Models for predicting potential yield loss of wheat caused by stripe rust in the US Pacific Northwest. Phytopathology. 2011;101:544–54.PubMedGoogle Scholar
  152. Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings C, Xi KQ, Wanyera R, Manninger K, Ganzález MI, Koyda M, Sanin S, Patzek LJ. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013;97:379–86.Google Scholar
  153. Sharma-Poudyal D, Chen XM, Rupp RA. Potential oversummering and overwintering regions for the wheat stripe rust pathogen in the contiguous United States. Int J Biometeorol. 2014;58:987–97.PubMedGoogle Scholar
  154. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol. 2011;49:465–81.PubMedGoogle Scholar
  155. Singh A, Pandey MP, Singh AK, Knox RE, Ammar K, Clarke JM, Clarke FR, Singh RP, Pozniak CJ, DePauw RM, McCallum BG, Cuthbert RD, Randhawa HS, Fetch Jr TG. Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat. Mol Breed. 2013;31:405–18.PubMedGoogle Scholar
  156. Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Campbell HL, Shorter S, Bhavani S. Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents. Theor Appl Genet. 2014;127:2465–77.PubMedGoogle Scholar
  157. Steele KA, Humphreys E, Wellings CR, Dickinson MJ. Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f. sp. tritici by use of molecular markers. Plant Pathol. 2001;50:174–80.Google Scholar
  158. Sthapit J, Newcomb M, Bonman JM, Chen XM, See D. Genetic diversity for stripe rust resistance in wheat landraces and identification of dual resistance to stem rust and stripe rust. Crop Sci. 2014;54:2131–9.Google Scholar
  159. Straib W. Untersuchungen über das Vorkommen physiologischer Rassen des Gelbrostes (Puccinia glumarum) in den Jahren 1935–1936 und über die Agressivität einiger neuer Formen auf Getreide und Gräsern. Arb Biol Reichsanst Land=Forstwirtsch, Berlin-Dahlem. 1937;22:91–119.Google Scholar
  160. Stubbs RW. Stripe rust. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, Diseases, distribution, epidemiology and control, vol. 2. Orlando: Academic; 1985. p. 61–101.Google Scholar
  161. Stubbs RW, Yang HA. Pathogenicity of Puccinia striiformis for wheat cultivars with resistance derived from rye. Proc Eur Mediterr Cereal Rusts Conf. 1988;7:110–2.Google Scholar
  162. Stubbs RW, Slovencikova V, Bartos P. Yellow rust resistance of some European wheat cultivars derived from rye. Cereal Rusts Bull. 1977;5:45–7.Google Scholar
  163. Sui X, He Z, Lu Y, Wang Z, Xia X. Molecular mapping of a non-host resistance gene YrpstY1 in barley (Hordeum vulgare L.) for resistance to wheat stripe rust. Hereditas. 2010;147:176–82.PubMedGoogle Scholar
  164. Tadesse W, Ogbonnaya FC, Jighly A, Nazari K, Rajaram S, Baum M. Association mapping of resistance to yellow rust in winter wheat cultivars and elite genotypes. Crop Sci. 2014;54:607–16.Google Scholar
  165. Talajoor M, Jin Y, Wan AM, Chen XM, Bhavani S, Tabe L, Lagudah E, Huang L. Specificity of a rust resistance suppressor on 7DL in the spring wheat cultivar Canthatch. Phytopathology. 2015;105:477–81.PubMedGoogle Scholar
  166. Tang CL, Wang XJ, Duan XY, Wang XD, Huang LL, Kang ZS. Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis. J Exp Bot. 2013;64:2955–69.PubMedPubMedCentralGoogle Scholar
  167. Tang CL, Wang XJ, Cheng YL, Liu MJ, Zhao MX, Wei JP, Kang ZS. New insights in the battle between wheat and Puccinia striiformis. Front Agr Sci Eng. 2015;2:101–14.Google Scholar
  168. Tang CL, Deng L, Chang D, Chen ST, Wang XJ, Kang ZS. TaADF3, an actin-depolymerizing factor, negatively modulates wheat resistance against Puccinia striiformis. Front Plant Sci. 2016;6:1214.PubMedPubMedCentralGoogle Scholar
  169. Tian Y, Zhan GM, Chen XM, Tungruentragoon A, Lu X, Zhao J, Huang LL, Kang ZS. Virulence and SSR marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology. 2016;106:185–91.PubMedGoogle Scholar
  170. Tollenaar H. A comparison of Puccinia striiformis f. sp. poae on bluegrass with P. striiformis f. sp. tritici and f. sp. dactylidis. Phytopathology. 1967;57:418–20.Google Scholar
  171. Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R. Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet. 2000;101:580–9.Google Scholar
  172. Vazquez MD, Zemetra R, Peterson CJ, Chen XM, Heesacker A, Mundt CC. Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theor Appl Genet. 2015;128:1307–18.PubMedGoogle Scholar
  173. Wan AM, Chen XM. Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Dis. 2012;96:67–74.Google Scholar
  174. Wan AM, Chen XM. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis. 2014;98:1534–42.Google Scholar
  175. Wan AM, Chen XM. Variation of telial formation in the Puccinia striiformis f. sp. tritici population. Phytopathology. 2016;S4:206–7.Google Scholar
  176. Wan AM, Chen XM, Yuen J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis. 2016;100:966–75.Google Scholar
  177. Wang MN, Chen XM. First report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Dis. 2013;97:839.Google Scholar
  178. Wang MN, Chen XM. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the US Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 2015;99:1500–6.Google Scholar
  179. Wang KN, Hong XW, Wu LR, Xie SX, Meng QY, Chen SM. The analysis of the resistance of varieties in the wheat stripe rust nurseries in 1951–1983. Acta Phytophylacica Sinica. 1986;13:112–23.Google Scholar
  180. Wang XJ, Tang CL, Deng L, Cai GL, Liu XY, Liu B, Han QM, Buchenauer H, Wei GR, Han DJ, Huang LL, Kang ZS. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant. 2010a;139:27–38.PubMedGoogle Scholar
  181. Wang B, Hu X, Li Q, Hao B, Zhang B, Li G, Kang Z. Development of race specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Dis. 2010b;94:221–8.Google Scholar
  182. Wang XJ, Tang CL, Zhang HC, Xu JR, Liu B, Lv J, Han DJ, Huang LL, Kang ZS. TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. MPMI. 2011;24:79–90.PubMedGoogle Scholar
  183. Wang XJ, Tang CL, Huang XL, Li FF, Chen XM, Zhang G, Sun YF, Han DJ, Huang LL, Kang ZS. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J Exp Bot. 2012a;63:4571–84.PubMedGoogle Scholar
  184. Wang XD, Wang XJ, Feng H, Tang CL, Bai PF, Wei GR, Huang LL, Kang ZS. TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici. MPMI. 2012b;25:755–64.PubMedGoogle Scholar
  185. Wang X, Wang X, Duan Y, Yin S, Zhang H, Huang L, Kang ZS. TaAbc1, a member of Abc1-like family involved in hypersensitive response against the stripe rust fungal pathogen in wheat. PLoS One. 2013;8:e58969.PubMedPubMedCentralGoogle Scholar
  186. Wang XM, Gaudet DA, Liu W, Frick M, Puchalski B, Lu ZX, Leggett F, Kang ZS, Laroche A. Defence responses including hypersensitive cell death, oxidative burst and defencegene expression in ‘Moro’ wheat inoculated with Puccinia striiformis. Can J Plant Pathol. 2014;36:202–15.Google Scholar
  187. Wang YJ, Wang CY, Zhang H, Ali M, Xue F, Liu XL, Chen CH, Ji WQ. Molecular mapping of stripe rust resistance gene Yrse5756 in synthetic hexaploid wheat and its transfer to common wheat. Pak J Bot. 2015a;47:1183–9.Google Scholar
  188. Wang FT, Lin RL, Feng J, Chen WQ, Qiu DW, Xu SC. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front Plant Sci. 2015b;6:108.PubMedPubMedCentralGoogle Scholar
  189. Wang GF, Fan RC, Wang XP, Wang DW, Zhang XQ. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. Plant Mol Biol. 2015c;87:577–89.PubMedGoogle Scholar
  190. Wang MN, Wan AM, Chen XM. Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest. Plant Dis. 2015d;99:1507–16.Google Scholar
  191. Wang ZY, Zhao J, Chen XM, Peng YL, Ji JJ, Zhao SL, Lu YJ, Huang LL, Kang ZS. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 2016;100:131–8.Google Scholar
  192. Wellings CR, Burdon JJ. Variability in Puccinia striiformis f. sp. tritici in Australasia. In: Proceedings of European mediterranean cereal rusts powdery mildews conference 8:114. 1992.Google Scholar
  193. Wellings CR, McIntosh RA. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol. 1990;39:316–25.Google Scholar
  194. Wellings CR, Burdon JJ, McIntosh RA, Wallwork H, Raman H, Murray GM. A new variant of Puccinia striiformis causing stripe rust on barley and wild Hordeum species in Australia. Plant Pathol. 2000;49:803.Google Scholar
  195. Westendorp GD. Quatrième notice sur quelques Cryptogames récemment découvertes en Belgique. Bull Acad R Sci Belg. 1854;21:229–46.Google Scholar
  196. Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chen XM, Liu B, Yu YT, Wang XJ, Huang LL, Kang ZS. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol. 2010;74:394–402.Google Scholar
  197. Xia CJ, Wan AM, Wang MN, Jiwan DA, See DR, Chen XM. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biol. 2016a;120:729–44.PubMedGoogle Scholar
  198. Xia CJ, Wang MN, Wan AM, Jiwan DA, See DR, Chen XM. Association analysis of SP-SNPs and avirulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Am J Plant Sci. 2016b;7:126–37.Google Scholar
  199. Xiang C, Feng JY, Wang MN, Chen XM, See DR, Wan AM, Wang T. Molecular mapping of Yr76 for resistance to stripe rust in winter club wheat cultivar Tyee. Phytopathology. 2016;106:1186–93.PubMedGoogle Scholar
  200. Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert S, Chen XM. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet. 2013;126:523–33.PubMedGoogle Scholar
  201. Xu HX, Zhang J, Zhang P, Qie YM, Niu YC, Li HJ, Ma PT, Xu YF, An JG. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica. 2014;198:317–23.Google Scholar
  202. Yan GP, Chen XM. Molecular mapping of a recessive barley gene for resistance to stripe rust. Theor Appl Genet. 2006;113:529–37.PubMedGoogle Scholar
  203. Yan GP, Chen XM. Molecular mapping of the rps1.a recessive gene for resistance to stripe rust in BBA 2890 barley. Phytopathology. 2007;97:668–73.PubMedGoogle Scholar
  204. Yan GP, Chen XM. Identification of a quantitative trait locus for high-temperature adult-plant resistance against Puccinia striiformis f. sp. hordei in ‘Bancroft’ barley. Phytopathology. 2008;98:120–7.PubMedGoogle Scholar
  205. Yan GP, Chen XM, Line RF, Wellings CR. Resistance gene analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet. 2003;106:636–43.PubMedGoogle Scholar
  206. Yan J-H, Luo Y, Chen T-T, Huang C, Ma Z-H. Field distribution of wheat stripe rust latent infection using real-time PCR. Plant Dis. 2012;96:544–51.Google Scholar
  207. Yang Y, Zhao J, Liu P, Xing H, Li C, Wei G, Kang ZS. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS ONE. 2013;8:e81756.Google Scholar
  208. Yin CT, Downey SI, Klages-Mundt NL, Ramachandran S, Chen XM, Szabo LJ, Pumphrey M, Hulbert SH. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genomics. 2015a;16:579.PubMedPubMedCentralGoogle Scholar
  209. Yin SN, Wang CF, Jiao M, Li F, Han QM, Huang LL, Zhang HC, Kang ZS. Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici. Protoplasma. 2015b;252:103–16.PubMedGoogle Scholar
  210. Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One. 2014;9:e105593.PubMedPubMedCentralGoogle Scholar
  211. Zeven AC, Knott DR, Johnson R. Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust. Euphytica. 1983;32:319–27.Google Scholar
  212. Zhan GM, Chen XM, Kang ZS, Huang LL, Wang MN, Wan AM, Cheng P, Cao SQ, Jin SL. Virulence and molecular comparison of Puccinia striiformis f. sp. tritici populations in China and the United States. Fungal Biol. 2012;116:643–53.PubMedGoogle Scholar
  213. Zhan GM, Wang FP, Chen XM, Wan CP, Han QM, Huang LL, Kang ZS. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Dis. 2016;100:99–107.Google Scholar
  214. Zhang G, Li YM, Sun YF, Wang JM, Liu B, Zhao J, Guo J, Huang LL, Chen XM, Kang ZS. Molecular characterization of a gene induced during wheat hypersensitive reaction to stripe rust. Biol Plant. 2011;55:696–702.Google Scholar
  215. Zhang HC, Wang CF, Cheng YL, Chen XM, Han QM, Huang LL, Wei GR, Kang ZS. Histological and cytological analyses of adult plant resistance to wheat stripe rust. Plant Cell Rep. 2012;31:2121–37.PubMedGoogle Scholar
  216. Zhang X, Han D, Zeng Q, Duan Y, Yuan F, et al. Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One. 2013;8:e57885.PubMedPubMedCentralGoogle Scholar
  217. Zhang ZJ, Chen JM, Su YY, Liu HM, Chen YE, Luo PG, Du XG, Wang D, Zhang HY. TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat. PLoS One. 2015;10:e0127723.PubMedPubMedCentralGoogle Scholar
  218. Zhang H, Zhang L, Wang CY, Wang YJ, Zhou XL, Lv SK, Liu XL, Kang ZS, Ji WQ. Molecular mapping and marker development for the Triticum dicoccoides-derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. Theor Appl Genet. 2016;129:369–76.PubMedGoogle Scholar
  219. Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS. A PCR-based assay for detection of Puccinia striiformis f. sp. tritici in wheat. Plant Dis. 2007;91:1669–74.Google Scholar
  220. Zhao J, Wang L, Wang ZY, Chen XM, Zhang HC, Yao JN, Zhan GM, Chen W, Huang LL, Kang ZS. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology. 2013;103:935–40.Google Scholar
  221. Zhao J, Zhao SL, Chen XM, Wang ZY, Wang L, Yao JN, Chen W, Huang LL, Kang ZS. Determination of the role of Berberis spp. in wheat stem rust in China. Plant Dis. 2015;99:1113–7.Google Scholar
  222. Zhao J, Wang MN, Chen XM, Kang ZS. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu Rev Phytopathol. 2016;54:207–28.PubMedGoogle Scholar
  223. Zheng WM, Huang LL, Huang JQ, Wang XJ, Chen XM, Zhao J, Guo J, Zhuang H, Qiu CZ, Liu J, Liu HQ, Huang XL, Pei GL, Zhan GM, Tang CL, Cheng YL, Liu MJ, Zhang JS, Zhao ZT, Zhang SJ, Han QM, Han DJ, Zhang HC, Zhao J, Gao XN, Wang JF, Ni PX, Dong W, Yang LF, Yang HM, Xu JR, Zhang GY, Kang ZS. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat Commun. 2013;4:2673.PubMedPubMedCentralGoogle Scholar
  224. Zheng J, Yan Z, Zhao L, Li S, Zhang Z, Garry R, Yang W, Pu Z. Molecular mapping of a stripe rust resistance gene in wheat line C15. J Genet. 2014;93:443–50.PubMedGoogle Scholar
  225. Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ, Rong L, Wang QL, Huang LL, Kang ZS. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet. 2014a;127:2349–58.PubMedGoogle Scholar
  226. Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor Appl Genet. 2014b;127:935–45.PubMedGoogle Scholar
  227. Zhou XL, Han DJ, Chen XM, Mu JM, Xue WB, Zeng QD, Wang QL, Huang LL, Kang ZS. QTL mapping of adult-plant resistance to stripe rust in wheat line P9897. Euphytica. 2015a;205:243–53.Google Scholar
  228. Zhou XL, Zhang Y, Zeng QD, Chen XM, Han DJ, Huang LL, Kang ZS. Identification of QTL for adult plant resistance to stripe rust in Chinese wheat landrace Caoxuan 5. Euphytica. 2015b;204:627–34.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research UnitPullmanUSA
  2. 2.Department of Plant PathologyWashington State UniversityPullmanUSA
  3. 3.State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina

Personalised recommendations