Advertisement

Stripe Rust pp 35-154 | Cite as

Variability of the Stripe Rust Pathogen

  • Anmin Wan
  • Xiaojie Wang
  • Zhensheng Kang
  • Xianming ChenEmail author

Abstract

The stripe rust pathogen, Puccinia striiformis, is highly variable. The variation has been studied for about 100 years based on virulence, for about 30 years based on molecular markers, and for about 10 years based on genome sequencing and functional genomics. Virulence characterization using host differential genotypes has identified a large number of races or pathotypes that overcome race-specific resistance genes in cultivars of wheat and barley crops. Such information is essential for developing cultivars with effective resistance to the disease. Molecular characterization of the pathogen using various marker techniques has generated data that are useful in determination of population structure, identification of pathogen introduction and dissemination and understanding of mechanisms of variation. Molecular characterization has conducted to support findings from virulence tests and/or obtain information that is unable to produce through virulence characterization. The high variability of the stripe rust pathogen is due to its high reproductivity, capability of long-distance dissemination, and ability for adapting to various host species and environments. Among the genetic and evolutionary mechanisms for producing variation, mutation is most important in generating new races and genotypes that are under selection of host species, host cultivars and environments. The pathogen also produces new races and genotypes through somatic recombination. Sexual recombination has been recently demonstrated mainly under controlled conditions in generating variation in races and phenotypes. Natural reproduction on alternate hosts, mainly Berberis spp., has been so far found in China, but its role in generating aeciospores to start stripe rust epidemics on cereal crops and creating new races to attack crop cultivars is still unclear in this country, while ruled out in some other countries. Compared to other fungal pathogens, research on genome sequencing and functional genomics has started relatively late, but recent studies have generated huge data that have helped in understanding the pathogen variation and created useful resources for developing new tools for further studying and monitoring the pathogen variation.

Keywords

Adaptation Aggressiveness Barley Clonal population Fitness Functional genomics Genetic drift; Genome Grasses Host differentials Molecular markers Mutation Population structure Puccinia striiformis Races Sexual recombination Somatic recombination Stripe rust Virulence Wheat Yellow rust 

References

  1. Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998;62:35–54.PubMedPubMedCentralGoogle Scholar
  2. Afshari F. Challenge of a new race of Puccinia striiformis f. sp. tritici in Iran. In: Yahyaoui A, Rajaram S, editors. Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th regional conferences on yellow rust in the Central and West Asia and North Africa (CWANA) Region. ICARDA (International Center for Agricultural Research in the Dry Areas). ISBN: 92-9127-273-6, 39–42. 2012a.Google Scholar
  3. Afshari F. Identification of wheat yellow (stripe) rust pathotypes in Iran. In: Yahyaoui A, Rajaram S, editors. Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th Regional Conferences on Yellow Rust in the Central and West Asia and North Africa (CWANA) Region. ICARDA (International Center for Agricultural Research in the Dry Areas), ISBN: 92-9127-273-6, 52–56. 2012b.Google Scholar
  4. Al-Ahmed A, Nachit M. New races of Puccinia striiformis f. sp. tritici in Syria. In: Poster Index, Borlaug Global Rust Initiative 2014 Technical Workshop 22–25 March, 2014, Universidad La Salle Noroeste Cd. Obregón, Mexico, pp 12. 2014. http://www.globalrust.org/sites/default/files/2014%20BGRI%20Poster%20Abstracts-Monitoring%20the%20Pathogens.pdf. Accessed 24 Sept 2016.
  5. Ali S, Leconte M, Walker AS, Enjalbert J, de Vallavieille-Pope C. Reduction in the sex ability of worldwide clonal populations of Puccinia striiformis f.sp. tritici. Fungal Genet Biol. 2010;47:828–38.PubMedCrossRefGoogle Scholar
  6. Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog. 2014a;10:e1003903.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ali S, Gladieux P, Rahman H, Saqib MS, Fiaz M, Ahmad H, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f.sp. tritici. Mol Ecol. 2014b;23:603–17.PubMedCrossRefGoogle Scholar
  8. Allison C, Isenbeck K. Biologische specialisierung von Puccinia glumarum tritici Erikss. und Henn. Phytopathologische Zeitschrift. 1930;2:87–98.Google Scholar
  9. Anikster Y The Formae speciales. In: Bushnell RW, Roelfs AP, editors. The cereal rusts, vol. I: Origins, specificity, structure and physiology. New York: Academic; 1984. p. 115–30.Google Scholar
  10. Babcock C, Chen XM, Crous PW, Dugan FM, Goates B, Green PN. Plant germplasm centers and microbial culture collections: A user’s guide to key genetic resources for plant pathology. Plant Dis. 2007;91:476–84.CrossRefGoogle Scholar
  11. Bader T, Bodendorfer B, Schröppel K, Morschhäuser J. Calcineurin is essential for virulence in Candida albicans. Infect Immun. 2003;71:5344–54.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bahl PN, Bakshi JS. Genetic of rust resistance in barley II. The inheritance of seedling resistance to four races of yellow rust. Indian J Genet Plant Breed. 1963;23:150–4.Google Scholar
  13. Bahri B, Leconte M, de Vallavieille-Pope C, Enjalbert J. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Conserv Genet. 2009a;10:1425–8.CrossRefGoogle Scholar
  14. Bahri B, Leconte M, Ouffroukh A, de Vallavieille-Pope C, Enjalbert J. Geographic limits of a clonal population of wheat yellow rust in the Mediterranean region. Mol Ecol. 2009b;18:4165–79.PubMedCrossRefGoogle Scholar
  15. Bahri B, Shah SJA, Hussain S, Leconte M, Enjalbert J, de Vallavieille-Pope C. Genetic diversity of the wheat yellow rust population in Pakistan and its relationship with host resistance. Plant Pathol. 2011;60:649–60.CrossRefGoogle Scholar
  16. Bailey J, Karaoglu H, Wellings C, Park R. Isolation and characterization of 25 genome-derived simple sequence repeat markers for Puccinia striiformis f. sp. tritici. Mol Ecol Resour. 2013;13:760–2.PubMedCrossRefGoogle Scholar
  17. Bakshi JS, Bahl PN. Inheritance of resistance to four races of yellow rust in two varieties of barley. Indian J Genet Plant Breed. 1965;25:239–42.Google Scholar
  18. Bakshi JS, Bahl PN, Kohli SP. Inheritance of seedling resistance to some Indian races of yellow rust in the crosses of rust resistant barley variety E.B. 410. Indian J Genet Plant Breed. 1964;24:72–7.Google Scholar
  19. Bamdadian A. Virulence, evolution and distribution of wheat stripe rust (Puccinia striiformis West. f. sp. tritici) in Iran. Proc Eur Midditter Cereal Rusts Powdery Mildews Conf. 1992;8:118–20.Google Scholar
  20. Barar GS, Kutcher HR. Race characterization of Puccinia striiformis f. sp. tritici, the cause of wheat stripe rust, in Saskatchewan and southern Alberta, Canada and virulence comparison with races from the United States. Plant Dis. 2016;100:1744–53.CrossRefGoogle Scholar
  21. Barnes CW, Szabo LJ. Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology. 2007;97:717–27.PubMedCrossRefGoogle Scholar
  22. Basse CW, Steinberg G. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol. 2004;5:83–92.PubMedCrossRefGoogle Scholar
  23. Bayles RA, Flath K, Hovmøller MS, de Vallavieille-Pope C. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie. 2000;20:805–11.CrossRefGoogle Scholar
  24. Becker A, Lange M. VIGS–genomics goes functional. Trends Plant Sci. 2009;15:1–4.PubMedCrossRefGoogle Scholar
  25. Berlin A, Djurle A, Samils B, Yuen J. Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology. 2012;102:1006–12.PubMedCrossRefGoogle Scholar
  26. Bever WW. Physiologic specialization in Puccinia glumerum in the United States. Phytopathology. 1934;24:686–8.Google Scholar
  27. Bhardwaj SC, Gangwar OP, Prasad P, Khan H. Newsletter "Mehtaensis" (Flowerdale Shimla) of Indian Institute of Wheat and Barley Research. Mehtaensis. 2014;34:1–23. http://dwr.res.in/sites/default/files/Publications/mehtaensisvl34no2.pdf Google Scholar
  28. Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact. 2007;20:627–36.PubMedCrossRefGoogle Scholar
  29. Boshoff WHP, Pretprius ZA, van Niekerk BD. Establishment, distribution, and pathogenicity of Puccinia striiformis f. sp. tritici in South Africa. Plant Dis. 2002;86:485–92.CrossRefGoogle Scholar
  30. Both M, Csukai M, Stumpf MPH, Spanu PD. Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell. 2005a;17:2107–22.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Both M, Eckert SE, Csukai M, Müller E, Dimopoulos G, Spanu PD. Transcript profiles of Blumeria graminis development during Infection reveal a cluster of genes that are potential virulence determinants. Mol Plant-Microbe Interact. 2005b;18:125–33.PubMedCrossRefGoogle Scholar
  32. Breakspear A, Momany M. The first fifty microarray studies in filamentous fungi. Microbiology. 2007;153:7–15.PubMedCrossRefGoogle Scholar
  33. Broeker K, Bernard F, Moerschbacher BM. An EST library from Puccinia graminis f. sp. tritici reveals genes potentially involved in fungal differentiation. FEMS Microbiol Lett. 2006;256:273–81.PubMedCrossRefGoogle Scholar
  34. Brown JKM, Hovmøller MS. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–41.PubMedCrossRefGoogle Scholar
  35. Brown JF, Sharp EL. The relative survival ability of pathogenic types of Puccinia striiformis in mixtures. Phytopathology. 1970;60:529–33.CrossRefGoogle Scholar
  36. Cantu D, Govindarajulu M, Kozik A, Wang MN, Chen XM, Kojima K, Jurka J, Michelmore RW, Dubcovsky J. Next generation sequencing provides rapid access to the genome of wheat stripe rust. PLoS ONE. 2011;8:e24230.CrossRefGoogle Scholar
  37. Cantu D, Segovia V, MacLean D, Bayles R, Chen XM, Kamoun S, Dubcovsky J, Saunders DGO, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genom. 2013;14:270.CrossRefGoogle Scholar
  38. Cao LH, Xu SH, Lin RM, Liu TG, Chen WQ. Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China. Lett Appl Microbiol. 2008;46:501–6.CrossRefGoogle Scholar
  39. Catanzariti A-M, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell. 2006;18:243–56.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chen XM. Epidemiology of barley stripe rust and races of Puccinia striiformis f. sp. hordei: the first decade in the United States. In: Abstracts of the 11th international cereal rusts and powdery mildews conference, 22–27 August, 2004, Norwich, UK, 2004. p. A2.8.Google Scholar
  41. Chen XM. Epidemiology and control of stripe rust Puccinia striiformis f. sp. tritici on wheat. Can J Plant Pathol. 2005;27:314–37.CrossRefGoogle Scholar
  42. Chen XM. Challenges and solutions for stripe rust control in the United States. Aus J Agric Res. 2007;58:648–55.CrossRefGoogle Scholar
  43. Chen XM. Races of Puccinia striiformis f. sp. hordei in the United States from 2004 to 2007. Barley Newsletter 51:WABNL51. 2008. http://wheat.pw.usda.gov/ggpages/BarleyNewsletter/51/WABNL51.htm. Accessed 16 Oct 2016.
  44. Chen XM. High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci. 2013;4:608–27.CrossRefGoogle Scholar
  45. Chen XM. Understanding plant fungal pathogen biology using a genomics approach. In: Conference abstract book of BIT’s 4th Annual World Congress of Microbes-2014, June 27–29, 2014, Dalian, China; 2014. p. 116.Google Scholar
  46. Chen XM, Line RF. Genes for resistance to stripe rust in 'Tres' wheat. Crop Sci. 1992a;32:692–6.CrossRefGoogle Scholar
  47. Chen XM, Line RF. Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology. 1992b;82:633–7.CrossRefGoogle Scholar
  48. Chen XM, Line RF. Identification of stripe rust resistance genes in wheat cultivars used to differentiate North American races of Puccinia striiformis. Phytopathology. 1992c;82:1428–34.CrossRefGoogle Scholar
  49. Chen XM, Line RF. Races of barley stripe rust in the United States. Barley Newsl 44. 2001. http://wheat.pw.usda.gov/ggpages/BarleyNewsletter/44/WashReport2.html. Accessed 16 Oct 2016.
  50. Chen XM, Moore MK. Epidemics and races of Puccinia striiformis in North America in 2001. Phytopathology. 2002;92:S14–5.Google Scholar
  51. Chen XM, Penman L. Races of Puccinia striiformis f. sp. hordei, the pathogen of barley stripe rust in the United States in 2004. Barley Genet Newsl. 2005;35:23–6. http://wheat.pw.usda.gov/ggpages/bgn/35/Chen.htm (accessed 16 Oct 2016Google Scholar
  52. Chen XM, Penman L. Stripe rust epidemic and races of Puccinia striiformis in the United States in 2005. Phytopathology. 2006;96:S23.Google Scholar
  53. Chen XM, Line RF, Leung H. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology. 1993;83:1489–97.CrossRefGoogle Scholar
  54. Chen FQ, Prehn D, Hayes PM. Mapping genes for barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet. 1994;88:215–9.PubMedGoogle Scholar
  55. Chen XM, Line RF, Jones SS. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres, and Daws. Phytopathology. 1995a;85:1362–7.CrossRefGoogle Scholar
  56. Chen XM, Line RF, Leung H. Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology. 1995b;85:1335–42.CrossRefGoogle Scholar
  57. Chen XM, Jones SS, Line RF. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars having resistance genes at Yr3 and Yr4 loci. Phytopathology. 1996;86:1228–33.CrossRefGoogle Scholar
  58. Chen XM, Moore MK, Milus EA, Long DL, Line RF, Marshall D, Jackson L. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis. 2002;86:39–46.CrossRefGoogle Scholar
  59. Chen XM, Moore MK, Wood DA. Epidemics and control of stripe rust on spring wheat in the Pacific Northwest in 2002. Phytopathology. 2003a;93:S16.CrossRefGoogle Scholar
  60. Chen XM, Soria MA, Yan GP, Sun J, Dubcovsky J. Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop Sci. 2003b;43:2058–64.CrossRefGoogle Scholar
  61. Chen XM, Moore MK, Wood DA. Stripe rust epidemics and races of Puccinia striiformis in the United States in 2003. Phytopathology. 2004;94:S18.CrossRefGoogle Scholar
  62. Chen XM, Penman LN, Richardson KL. Races of Puccinia striiformis, the stripe rust pathogen in the United States in 2006. Phytopathology. 2007;97:S21.Google Scholar
  63. Chen CQ, Zheng WM, Buchenauer H, Huang LL, Lu NH, Kang ZS. Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f.sp. tritici. Mol Ecol Resour. 2009a;9:236–8.PubMedCrossRefGoogle Scholar
  64. Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis. 2009b;93:1093–11.CrossRefGoogle Scholar
  65. Chen XM, Penman L, Wan AM, Cheng P. Race change of Puccinia striiformis f. sp. tritici and Puccinia striiformis f. sp. hordei in the United States. In: Abstract book of the 12th international cereal rusts and powdery mildews conference, 13–16 October, 2009, Antalya, Turkey, 2009c. p. 27.Google Scholar
  66. Chen XM, Penman L, Wan A, Cheng P. Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol. 2010;32:315–33.CrossRefGoogle Scholar
  67. Chen YL, Brand A, Morrison EL, Silao FGS, Bigol UG, Malbas Jr FF, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot Cell. 2011;10:803–19.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Chen XM, Coram T, Huang XL, Wang MN, Dolezal A. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Curr Genomics. 2013;14:111–26.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Cheng P, Chen XM. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet. 2010;121:195–204.PubMedCrossRefGoogle Scholar
  70. Cheng P, Chen XM. Virulence and molecular analyese support asexual reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Phytopathology. 2014;104:1208–20.PubMedCrossRefGoogle Scholar
  71. Cheng P, Chen XM, Xu LS, See DR. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Ecol Resour. 2012;12:779–81.PubMedCrossRefGoogle Scholar
  72. Cheng P, Xu LS, Wang MN, See DR, Chen XM. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet. 2014;127:2267–77.PubMedCrossRefGoogle Scholar
  73. Cheng JJ, Kang ZS, Huang LL, Wang MN, Wan AM, Cheng P. Molecular identification of somatic recombination of stripe rust pathogen (Puccinia striiformis) in the greenhouse. Mycosystema. 2015a;34:1128–42.Google Scholar
  74. Cheng YL, Wang XJ, Yao JN, Voegele RT, Zhang YR, Wang WM, Huang LL, Kang ZS. Characterization of protein kinase PsSRPKL, a novel pathogenicity factor in the wheat stripe rust fungus. Environ Microbiol. 2015b;17:2601–17.PubMedCrossRefGoogle Scholar
  75. Cheng P, Chen XM, See D. Grass hosts harbor more diverse isolates of Puccinia striiformis than cereal crops. Phytopathology. 2016a;106:362–71.PubMedCrossRefGoogle Scholar
  76. Cheng YL, Wang WM, Yao JN, Huang LL, Voegele RT, Wang XJ, Kang ZS. Two distinct Ras genes from Puccinia striiformis exhibit differential roles in rust pathogenicity and cell death. Environ Microbiol. 2016b;18:3910–22.PubMedCrossRefGoogle Scholar
  77. Cheng YL, Wu K, Yao JN, Li SM, Wang XJ, Huang LL, Kang ZS. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environ Microbiol. 2016c. doi: 10.1111/1462-2920.13610
  78. Collections APS, Committee G. Is your favorite pathogen collection endangered? Phytopathology. 2005;95:S4.CrossRefGoogle Scholar
  79. Coram TE, Brown-Guedira G, Chen XM. Using transcriptomics to understand the wheat genome. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resource. 2008a;3:1–9.CrossRefGoogle Scholar
  80. Coram TE, Settles ML, Chen XM. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008b;9:479–93.PubMedCrossRefGoogle Scholar
  81. Coram TE, Settles ML, Wang MN, Chen XM. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus. Theor Appl Genet. 2008c;117:401–11.PubMedCrossRefGoogle Scholar
  82. Coram TE, Wang MN, Chen XM. Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol. 2008d;9:157–69.PubMedCrossRefGoogle Scholar
  83. Coram TE, Huang XL, Zhan GM, Settles ML, Chen XM. Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Funct Integr Genomics. 2010;10:383–92.PubMedCrossRefGoogle Scholar
  84. Cowen LE, Steinbach WJ. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell. 2008;7:747–64.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Cuomo C, Young S, Wang MN, Yin CT, Hulbert S, Chen XM. Whole genome sequence of Puccinia striiformis f. sp. tritici and genome size comparisons with P. graminis f. sp. tritici and P. triticina. In: Chen W-Q, editor. Disease risk and food security. Proceedings of the 13th international cereal rusts and powdery mildews conferene, Beijing, China, 28 August – 1 September 2012, China Agricultural Science and Technology Press; 2012. p. 68.Google Scholar
  86. Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D, Linning R, Sakthikumar S, Song X, Adiconis X, Fan L, Goldberg JM, Levin JZ, Young S, Zeng QD, Anikster Y, Bruce M, Wang MN, Yin CT, McCallum B, Szabo LJ, Hulbert S, Chen XM, Fellers JP. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. 3G: Genes Genomes. Genomics. 2017;7:371–6.Google Scholar
  87. de Vallavieille-Pope C, Line RF. Virulence of North American and European races of Puccinia striiformis on North American, world, and European differential wheat cultivars. Plant Dis. 1990;74:739–43.CrossRefGoogle Scholar
  88. de Vallavieille-Pope C, Ali S, Leconte M, Enjalbert J, Delos M, Jacques R. Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. Plant Dis. 2012;96:131–40.CrossRefGoogle Scholar
  89. Dietz SM, Hendrix JW. Reactions of grasses to stripe rust at Pullman, Washington. Phytopathology. 1962;52:730.Google Scholar
  90. Divon HH, Rothan-Denoyes B, Davydov O, Di Pietro A, Fluhr R. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection. Mol Plant Pathol. 2005;6:459–70.PubMedCrossRefGoogle Scholar
  91. Dobzhansky T. On some fundamental concepts of darwinian biology. In: Dobzhansky T, Hecht MK, Steere WC, editors. Evolutionary biology. New York: Appleton-Century-Crofts; 1968. http://link.springer.com/chapter/10.1007%2F978-1-4684-8094-8_1
  92. Dodds PN, Lawrence GJ, Catanzariti A-M, Ayliffe MA, Ellis JG. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell. 2004;16:755–68.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Dong YL, Yin CT, Hulbert S, Chen XM, Kang ZS. Cloning and expression analysis of three secreted protein genes from wheat stripe rust fungus Puccinia striiformis f. sp. tritici. World J Microbiol Biotechnol. 2011;27:1261–5.CrossRefGoogle Scholar
  94. Duan X, Tellier A, Wan A, Leconte M, de Vallavieille-Pope C, Enjalbert J. Puccinia striiformis f.sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia. 2010;102:44–53.PubMedCrossRefGoogle Scholar
  95. Dubin HJ, Stubbs RW. Epidemic spread of barley stripe rust in South America. Plant Dis. 1986;70:141–4.CrossRefGoogle Scholar
  96. Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Nat Acad Sci. 2011;108:9166–71.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ebbole DJ, Jin Y, Thon M, Pan H, Bhattarai E, Thomas T, Dean R. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol Plant Microbe Interact. 2004;17:1337–47.PubMedCrossRefGoogle Scholar
  98. Enjalbert J, Duan X, Giraud T, Vaurtin D, de Vallavieille-Pope C, Solignac M. Isolation of 12 microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Mol Ecol Note. 2002;2:563–5.CrossRefGoogle Scholar
  99. Enjalbert J, Duan X, Leconte M, Hovmøller MS, de Vallavieille-Pope C. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f.sp. tritici) within France. Mol Ecol. 2005;14:2065–73.PubMedCrossRefGoogle Scholar
  100. Eriksson J. Ueber die Specialisierung des Parasitismus bei den Getreiderostpilzen. Ber Dtsch Bot Ges. 1894;12:292–331.Google Scholar
  101. Esfandiari E. Les rouilles de cereales en Iran [Cereal rusts in Iran]. Appl Entomol Phytopathol. 1947;4:67–76.Google Scholar
  102. Fabrizio P, Longo VD. Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta. 2008;1783:1280–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Fang CT. Physiological specialization of Puccinia glumarum Erikss. and Henn. in China. Phytopathology. 1944;34:1020–2014.Google Scholar
  104. Feng JY, Wang MN, Chen XM, See DR, Zheng YL, Chao SM, Wan AM. Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology. 2015;105:1206–13.PubMedCrossRefGoogle Scholar
  105. Fraaije BA, Lovell DJ, Coelho JM, Baldwin S, Hollomon DW. PCR-based assays to assess wheat varietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. Eur J Plant Pathol. 2001;107:905–17.CrossRefGoogle Scholar
  106. Fröhlich KU, Fussi H, Ruckenstuhl C. Yeast apoptosis–From genes to pathways. Semin Cancer Biol. 2007;17:112–21.PubMedCrossRefGoogle Scholar
  107. Fuchs E. Physiologische Rassen bei Gelbrost (Puccinia glumarum (Schm) Erikss. & Henn.) auf weizen. Nachrbl Dtsch Pflanzenshutzd Braunschw. 1960;12:49–63.Google Scholar
  108. Galletta BJ, Cooper JA. Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol. 2009;21:20–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Gao L, Yu HX, Shen HM, Li C, Liu TG, Liu B, Kang XH, Chen WQ. Development of SCAR markers and an SYBR green assay to detect Puccinia striiformis f. sp. tritici in infected wheat leaves. Plant Dis. 2016;100:1840–7.CrossRefGoogle Scholar
  110. Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS One. 2013;8:e67150.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Gassner G, Straib W. Die Bestimmung der Biologischen Rassen des Weizengelbrostes [Puccinia glumarum tritici (Schmidt). Erikss. U. Henn.]. Arb Biol Rechsanst Land Forstwirtsch. 1932;20:141–63.Google Scholar
  112. Gassner G, Straib W. Uber mutationen in einer biologischen rasse von Puccinia glumarum tritici (Schmidt) Erikss. und Henn. Mol. Gen. Genet. MGG. 1933;63:154–80.Google Scholar
  113. Gerechter-Amitai ZK, von Silfhout CH, Grama A, Kleitman F. Yr15 – a new gene for resistance to Puccinia striiformis in Triticium dicoccoided sel. G-25. Euphytica. 1989;43:187–90.CrossRefGoogle Scholar
  114. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–30.PubMedPubMedCentralGoogle Scholar
  115. Goddard MV. The production of a new race, 105E137 of P. striiformis in glasshouse experiments. Trans Br Mycol Soc. 1976;67:395–8.CrossRefGoogle Scholar
  116. Godfrey D, Böhlenius H, Pedersen C, Zhang Z, Emmersen J, Thordal-Christensen H. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics. 2010;11:317.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Good M, Tang G, Singleton J, Remenyi A, Lim WA. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell. 2009;136:1085–97.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Green JC. Physiologic races of wheat stem rust in Canada from 1919 to 1969. Can J Bot. 1971;49:1575–88.CrossRefGoogle Scholar
  119. Gu B, Kale SD, Wang Q, Wang D, Pan Q, Cao H, Meng YL, Kang ZS, Tyler BM, Shan WX. Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS ONE. 2011;6:e27217.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Güldener U, Seong KY, Boddu J, Cho S, Trail F, Xu JR, Adam G, Mewes HW, Muehlbauer GJ, Kistler C. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol. 2006;43:316–25.PubMedCrossRefGoogle Scholar
  121. Guo J, Dai XW, Xu JR, Wang YL, Bai PF, Liu FR, Duan YH, Zhang H, Huang LL, Kang ZS. Molecular characterization of a Fus3/Kss1 type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS ONE. 2011;6:e21895.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Guo J, Duan YH, Zhang JS, Shi XX, Chen YY, Zhang H, Huang LL, Kang ZS. A conidiation-related gene is highly expressed at the resting urediniospore stage in Puccinia striiformis f. sp. tritici. J Basic Microbiol. 2013;53:695–702.PubMedCrossRefGoogle Scholar
  123. Hahn M, Mendgen K. Characterization of in plant-induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant Microbe Interact. 1997;10:427–37.PubMedCrossRefGoogle Scholar
  124. Hakim MS, Mamluk OF. Virulence of wheat yellow rust pathogen in Syria and Lebanon. Proc Eur Mediterr Cereal Rusts Powdery Mildew Conf. 1996;9:141.Google Scholar
  125. Hassebrauk K. Nomenklatur, geographische verbreitung und wirtsbereich des gelbrostes, Puccinia striiformis West. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem. 1965;116:1–75.Google Scholar
  126. Hassebrauk K, Röbbelen G. Der Gelbrost Puccinia striiformis West. 3. Die Spezialisierung. Mitt Biol Bundesanst Land Forstwirtsch, Berlin-Dahlem. 1974;156:1–150.Google Scholar
  127. Heath IB, Bonham M, Akram A, Gupta GD. The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet Biol. 2003;38:85–97.CrossRefGoogle Scholar
  128. Holtz MD, Kumar K, Zantinge JL, Xi K. Genetic diversity of Puccinia striiformis from cereals in Alberta, Canada. Plant Pathol. 2013;63:415–24.CrossRefGoogle Scholar
  129. Hou L, Chen XM, Wang MN, See DR, Chao SM, Bulli P, Jing JX. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS ONE. 2015;10:e0126794.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Hovmøller MS. Disease severity and pathotype dynamics of Puccinia striiformis f. sp. tritici in Denmark. Plant Pathol. 2001;50:181–9.CrossRefGoogle Scholar
  131. Hovmøller MS, Henriksen KE. Application of pathogen surveys, disease nurseries and varietal resistance characteristics in a IPM approach for the control of wheat yellow rust. Eur J Plant Pathol. 2008;121:377–85.CrossRefGoogle Scholar
  132. Hovmøller MS, Justesen AF. Rates of evolution of avirulence phenotypes and DNA markers in northwest European population of Puccinia striiformis f.sp. tritici. Mol Ecol. 2007;16:4637–47.PubMedCrossRefGoogle Scholar
  133. Hovmøller MS, Justesen AF, Brown JKM. Clonality and long-distance migration of Puccinia striiformis f.sp. tritici in north-west Europe. Plant Pathol. 2002;51:24–32.CrossRefGoogle Scholar
  134. Hovmøller MS, Yahyaoui AH, Milus EA, Justesen AF. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol Ecol. 2008;17:3818–26.PubMedCrossRefGoogle Scholar
  135. Hovmøller MS, Walter S, Justesen AF. Escalating threat of wheat rusts. Science. 2010;329:369.PubMedCrossRefGoogle Scholar
  136. Hovmøller MS, Sørensen CK, Walter S, Justesen AF. Diversity of Puccinia striiformis on cereals and grasses. Annu Rev Phytopathol. 2011;49:197–217.PubMedCrossRefGoogle Scholar
  137. Hovmøller MS, Walter S, Ali S, Justesen AF, Hansen J, Lassen P, Bayles R, Flath K, de Vallavieille-Pope C. The influence of mutation, recombination and exotic incursions on the recent dynamics of Puccinia striiformis in Europe. Page 40. In: Chen WQ, editor. Disease risk and food security, Proceedings of the 13th international cereal rusts and powdery mildews conference. 28 August – 1 September 2012, Beijing. 2012.Google Scholar
  138. Hovmøller MS, Walter S, Bayles RA, Hubbard A, Flath K, Sommerfeldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2016;65:402–11.CrossRefGoogle Scholar
  139. Hu GG, Linning R, Kamp A, Joseph C, McCallum B, Banks T, Cloutier S, Butterfield Y, Liu J, Kirkpatrick R, Stott J, Yang G, Smailus D, Jones S, Marra M, Schein J, Pei JM, Westwood T, Bakkeren G. Generation of a wheat leaf rust, Puccinia triticina, EST database and microarray from stage-specific cDNA libraries. In: Proceedings of the 11th international cereal rusts and powdery mildew conference 22–27 August 2004, Norwich, England, Abtract. 2004. A1.47Google Scholar
  140. Hu GG, Linning R, Mccallum B, Banks T, Cloutier S, Butterfield Y, Liu J, Kirkpatrick R, Stott J, Yang G, Smailus D, Jones S, Marra M, Schein J, Bakkeren G. Generation of a wheat leaf rust, Puccinia triticina, EST database from stage-specific cDNA libraries. Mol Plant Pathol. 2007;8:451–67.PubMedCrossRefGoogle Scholar
  141. Hu X, Li J, Wang Y, Wang B, Li Q, Kang Z, Yang M, Peng Y, Liu T, Chen W, Xu X. Race composition of Puccinia striiformis f. sp. tritici in Tibet, China. Plant Dis. 2012;96:1615–20.CrossRefGoogle Scholar
  142. Huang LL, Wang XL, Kang ZS, Zhao J. Mutation of pathogenicity induced by ultraviolet radiation in Puccinia striiformis f. sp. tritici and RAPD analysis of mutants. Mycosystema. 2005;24:400–6.Google Scholar
  143. Huang XL, Chen XM, Coram T, Wang MN, Kang ZS. Gene expression profiling of Puccinia striiformis f. sp. tritici during development reveals a highly dynamic transcriptome. J Genet Genomics. 2011;38:357–71.PubMedGoogle Scholar
  144. Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015;16:23.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Humphrey HB, Hungerford CW, Johnson AG. Stripe rust (Puccinia glumerum) of cereals and grasses in the United States. J Agric Res. 1924;29:209–27.Google Scholar
  146. Hungerford CW, Owens CE. Specialized varieties of Puccinia glumarum and hosts for variety tritici. J Agric Res (Washington, DC). 1923;25:363–401.Google Scholar
  147. Hussain M, Kirmani MAS, Haque E. Agriculture-guided evolution of pathotypes of Puccinia striiformis Westend. f. sp. tritici in Pakistan. In: Yahyaoui A, Rajaram S, editors. Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th regional conferences on yellow rust in the Central and West Asia and North Africa (CWANA) Region. ICARDA (International Center for Agricultural Research in the Dry Areas), ISBN: 92-9127-273-6, 57-63. 2012.Google Scholar
  148. ICARDA. Strategies to Reduce the Emerging Wheat Stripe Rust Disease. 2011. http://www.icarda.org/striperust2014/wp-content/uploads/2014/01/Strategies_to_reduce.pdf
  149. Iida Y, Ohara T, Tsuge T. Identification of genes up-regulated during conidiation of Fusarium oxysporum through expressed sequence tag analysis. Fungal Genet Biol. 2006;43:179–89.PubMedCrossRefGoogle Scholar
  150. Jakupovic M, Heintz M, Reichmann P, Mendgen K, Hahn M. Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol. 2006;43:8–19.PubMedCrossRefGoogle Scholar
  151. Jenczmionka NJ, Maier FJ, Losch AP, Schafer W. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head blight disease of wheat, are regulated by the MAP kinase GPMK1. Curr Genet. 2003;43:87–95.PubMedGoogle Scholar
  152. Jin Y, Szabo LJ, Carson M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berveris as an alternate host. Phytopathology. 2010;100:432–5.PubMedCrossRefGoogle Scholar
  153. Johnson R, Taylor AJ. Yellow rust of wheat. Cambridge: Plant Breeding Institute, 1975 annual report; 1976. p. 106–9.Google Scholar
  154. Johnson R, Stubbs RW, Fuchs E, Chamberlain NH. Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Trans Br Mycol Soc. 1972;58:475–80.CrossRefGoogle Scholar
  155. Justesen AF, Ridout CJ, Hovmøller MS. The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathol. 2002;51:13–23.CrossRefGoogle Scholar
  156. Juvvadi PR, Fortwendel JR, Rogg LE, Burns KA, Randell SH, et al. Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus. Mol Microbiol. 2011;82:1235–59.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Kahmann R, Kamper J. Ustilago maydis: how its biology relates to pathogenic development. New Phytol. 2004;164:31–42.CrossRefGoogle Scholar
  158. Kajiwara T. Beiträge zur Kenntnis der Physiologischen Spezialisierung der Gerstengelbrostes (Puccinia striiformis West. f. sp. hordei Erikss.). Nachr Dtsch Pflanzenschutzd Braunschweig. 1964;4:58–9.Google Scholar
  159. Kajiwara T, Ueda I, Iwata Y. Untersuchungen über die Physiologische Spezialisierung des Gerstengebrostes (Puccinia striiformis f. sp. hordei) in Japan. Phytopathol Z. 1964a;50:313–28.CrossRefGoogle Scholar
  160. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006;444:97–101.PubMedCrossRefGoogle Scholar
  161. Kang ZS, Li ZQ, Shang HS. A new isolate produced by the heterokaryosis of wheat stripe rust. Acta Univ Agric Boreali-Occidentalis. 1993;21:77–9.Google Scholar
  162. Kang ZS, Li ZQ, Shang HS. Nuclear condition of uredinial stage of wheat stripe rust. Acta Phytopathol Sinica. 1994a;24:26–31.Google Scholar
  163. Kang ZS, Li ZQ, Shang HS. On the screening of new heterocaryons of wheat stripe rust and its nuclear dissociation. Acta Phytopathol Sinica. 1994b;24:101–5.Google Scholar
  164. Karki CB. Wheat yellow rust and monitoring virulence of its pathogen, Puccinia striiformis f.sp. tritici, in Nepal. Regional seminar on microbial research. Kathmandu: Royal Nepal Academy of Science and Technology; 1989.Google Scholar
  165. Karki CB, Sharma S. Wheat disease report 1989–1990. In: Proceedings of the 13th national winter crops seminar. Siddhartha Nagar: NWRP; 1990. p. 189–206.Google Scholar
  166. Karki CB, Sharma S, Duveiller E. Yellow rust of wheat in Nepal: an overview. In: Yahyaoui A, Rajaram S, editors. Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th Regional conferences on yellow rust in the Central and West Asia and North Africa (CWANA) Region. ICARDA (International Center for Agricultural Research in the Dry Areas), ISBN: 92-9127-273-6, 13-19. 2012.Google Scholar
  167. Kema GHJ. Resistance in spelta wheat to yellow rust I. Formal analysis and variation for gliadin patterns. Euphytica. 1992;63:207–17.Google Scholar
  168. Koizumi J, Okamoto Y, Onogi H, Mayeda A, Krainer AR, Hagiwara M. The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs). J Biol Chem. 1999;274:11125–31.PubMedCrossRefGoogle Scholar
  169. Komjáti H, Pasquali M, Hubbard A, Lee D, Bayles R. IGS, SSR and SRAP analysis of Puccinia striiformis isolates. In: Proceedings of the 11th international cereal rusts and powdery mildews conference, 22–27 August 2004, John Innes Centre, Norwich, UK. European and Mediterranean Cereal Rust Foundation, Wageningen. Cereal Rusts and Powdery Mildews Bulletin, Abstract A2.33. 2004.Google Scholar
  170. Kosman E. Measuring diversity: from individuals to populations. Eur J Plant Pathol. 2014;138:467–86.CrossRefGoogle Scholar
  171. Kosman E, Dinoor A, Herrmann A, Schachtel GA. Virulence Analysis Tool (VAT). User manual. 2008. Available online http://www.tau.ac.il/lifesci/departments/plant_s/members/kosman/VAT.html
  172. Kultz D. Phylogenetic and functional classification of mitogen- and stress activated protein kinases. J Mol Evol. 1998;46:571–88.PubMedCrossRefGoogle Scholar
  173. Kumar K, Holtz MD, Xi K, Turkington TK. Virulence of Puccinia striiformis on wheat and barley in central Alberta. Can J Plant Pathol. 2012;34:551–61.CrossRefGoogle Scholar
  174. Kumar K, Holtz MD, Xi K, Turkington TK. Overwintering potential of the stripe rust pathogen (Puccinia striiformis) in central Alberta. Can J Plant Pathol. 2013;35:304–14.CrossRefGoogle Scholar
  175. Latch GCM. Stripe rust, Puccinia striiformis f.sp. dactylidis, on Dactylis glomerata in New Zealand. New Zealand J Agric Res. 1976;19:535–6.CrossRefGoogle Scholar
  176. Lee N, Kronstad JW. Ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot Cell. 2002;1:954–66.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Lei Y, Wang MN, Wan AM, Xia CJ, See DR, Zhang M, Chen XM. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology. 2016;107:329–44.PubMedCrossRefGoogle Scholar
  178. Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan XW, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev. 2000;64:746–85.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Leppik EE. Gene centres of plants as sources of disease resistance. Annu Rev Phytopathol. 1970;8:324–44.CrossRefGoogle Scholar
  180. Li ZQ, Zeng SM. Wheat rusts in China. Beijing: China Agricultural Press; 2002. p. 379.Google Scholar
  181. Li YX, Wang MN, Wan AM, Chen XM. Development of Puccinia striiformis f. sp. tritici mutants for avirulence characterization. Phytopathology. 2016;S4:20.Google Scholar
  182. Liang JM, Wan Q, Luo Y, Ma ZH. Population genetic structures of Puccinia striiformis in Ningxia and Gansu provinces of China. Plant Dis. 2013;97:501–9.CrossRefGoogle Scholar
  183. Liang JM, Liu XF, Li Y, Wan Q, Ma ZH, Luo Y. Population genetic structure and the migration of Puccinia striiformis f. sp. tritici between the Gansu and Sichuan Basin populations of China. Phytopathology. 2016;106:192–201.PubMedCrossRefGoogle Scholar
  184. Lin F, Chen XM. Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express. Theor Appl Genet. 2008;116:797–806.PubMedCrossRefGoogle Scholar
  185. Line RF. Stripe rust of wheat and barley in North America: a retrospective historical review. Annual Review of Phytopathology. 2002;40:75–118.PubMedCrossRefGoogle Scholar
  186. Line RF, Qayoum A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Department of Agriculture, Agriculture Research Services, Technical Bulletin, 1788, 1992. 44 pp.Google Scholar
  187. Line RF, Sharp EL, Powelson RL. A system for differentiating races of Puccinia striiformis in the United Sates. Plant Dis Rep. 1970;54:992–4.Google Scholar
  188. Ling P, Wang MN, Chen XM, Campbell KG. Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici). BMC Genomics. 2007;8:145–58.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Link T, Seibel C, Voegele RT. Early insights into the genome sequence of Uromyces fabae. Front Plant Sci. 2014;5:587.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Little R, Manners JG. Somatic recombination in yellow rust of wheat (P. striiformis). I. production and possible origin of 2 new physiologic races. Trans Br Mycol Soc. 1969a;53:251–8.CrossRefGoogle Scholar
  191. Little R, Manners JG. Somatic recombination in yellow rust of wheat (P. striiformis). I. Germ tube fusion, nuclear number and nuclear size. Trans Br Mycol Soc. 1969b;53:259–67.CrossRefGoogle Scholar
  192. Liu M, Hambleton S. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence. Fungal Biol. 2010;114:881–99.PubMedCrossRefGoogle Scholar
  193. Liu Z, Szabo LJ, Bushnell WR. Molecular cloning and analysis of abundant and stage specific mRNAs from Puccinia graminis. Mol Plant Microbe Interact. 1993;6:84–91.PubMedCrossRefGoogle Scholar
  194. Liu WD, Zhou XY, Li GT, Li L, Kong LG, Wang CF, Zhang HF, Xu J-R. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 2011a;7:e1001261.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Liu X, Huang C, Sun Z, Liang J, Luo Y, Ma Z. Analysis of population structure of Puccinia striiformis f. sp. tritici in Yunnan Province of China by using AFLP. Eur J Plant Pathol. 2011b;129:43–55.CrossRefGoogle Scholar
  196. Liu J, Zhang Q, Chang Q, Zhuang H, Huang LL, Kang ZS. Cloning and characterization of the actin gene from Puccinia striiformis f. sp. tritici. World J Microbiol Biotechnol. 2012a;28:2331–9.PubMedCrossRefGoogle Scholar
  197. Liu B, Chen XM, Kang ZS. Gene sequencing reveals heterokaryotic variations and evolutionary mechanisms in Puccinia striiformis. Open J Genomics. 2012b;1:1–14. http://rossscience.org/ojgen/articles/2075-9061-1-1.pdf Google Scholar
  198. Liu B, Zhang JQ, Chen WQ, Liu TG, Gao L. Discovery of high temperature tolerant isolates of Puccinia striiformis Westend. in China. In: Chen WQ, editor. Disease risk and food security, Proceedings of the 13th international cereal rusts and powdery mildews conference, 26 August – 1 September 2012. Beijing: China Agricultural Science and Technology Press; 2012c. p. 44Google Scholar
  199. Liu CH, Pedersen C, Schultz-Larsen T, Aguilar GB, Madriz-Ordenana K, Hovmøller MS, Thordal-Christensen H. The stripe rust fungal effector PEC6 suppresses pattern- triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytologist. 2016a; doi: 10.1111/nph.14034.PubMedCentralGoogle Scholar
  200. Liu J, Guan T, Zheng PJ, Chen LY, Yang Y, Huai BY, Li D, Chang Q, Huang LL, Kang ZS. An excellular Zn-only superoxide dismutase from Puccinia striiformis confer enhanced resistance to host-derived oxidative stress. Environ Microbiol. 2016b;18:4118–35.PubMedCrossRefGoogle Scholar
  201. Liu TL, Wan AM, Chen XM. Virulence characterization of Puccinia striiformis f. sp. tritici in the US for the past 48 years using the Yr single-gene differentials. Phytopathology. 2016c;S4:201.Google Scholar
  202. Loladze A, Druml T, Wellings CR. Temperature adaptation in Australasian populations of Puccinia striiformis f. sp. tritici. Plant Pathol. 2014;63:572–80.CrossRefGoogle Scholar
  203. Lorys MMA, Villaréal CL, Claude de Vallavieille-Pope CN. Genetic variability in Puccinia striiformis f. sp. tritici populations sampled on a local scale during natural epidemics. Appl Environ Microbiol. 2002;68:6138–45.CrossRefGoogle Scholar
  204. Lu SI, Fan KF, Shia SM, Mu WT, Kang SL, Yang TM, Wang KN, Lee SP. Studies on stripe rust of wheat. I. Physiologic specialization of Puccinia glumarum (Schmidt) Erikss. & Henn. Chin J Plant Pathol. 1956;2:153–66.Google Scholar
  205. Lu LL, Zhang RJ, Wang MN, Wang Y, Jing JX, Li ZQ. Virulent transgenic mutants obtained by particle bombardment transformation of Puccinia striiformis f. sp. tritici with the GUS gene. Acta Phytopathol Sin. 2009;39:466–75.Google Scholar
  206. Lu NH, Zhan GM, Chen XM, Wang JF, Huang LL, Kang ZS. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in the Northwest China. Eur J Plant Pathol. 2011;131:685–93.CrossRefGoogle Scholar
  207. Luo H, Wang X, Zhan G, Wei G, Zhou X, Zhao J, Huang LL, Kang ZS. Genome-wide analysis of simple sequence repeats and efficient development of polymorphic SSR markers based on whole genome re-sequencing of multiple isolates of the wheat stripe rust fungus. PLoS ONE. 2015;10(6):e0130362.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Lupton FGH, Macer RCF. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Trans Br Mycol Soc. 1962;45:21–45.CrossRefGoogle Scholar
  209. Ma Q, Kang ZS, Li ZQ. The fusion of urediospore germ tubes in P. striiformis West. on wheat leaves. Acta Univ Agric Boreali-Occidentalis. 1993;21:97–8.Google Scholar
  210. Ma LJ, Kong XY, Qiao JX, An F, Hu XP, Xu XM. Overwintering of Puccinia striiformis f. tritici on winter wheat at varying altitudes in Gansu and Qinghai provinces. Plant Dis. 2016;100:1138–45.CrossRefGoogle Scholar
  211. Macer RCF. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: MacKey J (ed) Proc 2nd Intl Wheat Genet Symp, Lund, Sweden 1963. Hereditas Suppl. 1966;2:127–42.Google Scholar
  212. Macer RCF. The resistance of cereals to yellow rust and its exploitation in plant breeding. Proc Royal Soc London. 1972;181:281–301.CrossRefGoogle Scholar
  213. MacKenzie DR. Estimating parasitic fitness. Phytopathology. 1978;68:9–13.CrossRefGoogle Scholar
  214. Madariaga R, Mellado M, Becerra V. Significance of wheat yellow rust (Yr) genes in Chile. In: Programme and Abstracts of 11th international cereal rusts powdery mildews conference, 22–27 August, 2004, Norwich: John Innes Center; 2004. p. A2.38Google Scholar
  215. Mamluk OH, El-Naimi M. Occurrence and virulence of wheat yellow rust in Syria. Proc Eur Medditter Cereal Rusts and Mildews Conf. 1992;8:115–7.Google Scholar
  216. Manners J. Puccinia striiformis Westend. var. dactylidis var. nov. Trans Br Mycol Soc. 1960;43:65–8.CrossRefGoogle Scholar
  217. Manners J. Puccinia striiformis, yellow rust (stripe rust) of cereals and grasses. Adv Plant Pathol. 1988;6:373–87.CrossRefGoogle Scholar
  218. Manninger K. Virulence survey for wheat rusts in Hungary during 2000–2003. In: Proceedings of the 11th international cereal rusts and powdery mildews conference, 22–27 August 2004. Norwich: John Innes Centre; 2004. p. A2.41Google Scholar
  219. Markell SG, Milus EA. Emergence of a novel population of Puccinia striiformis f. sp. tritici in eastern United States. Phytopathology. 2008;98:632–9.PubMedCrossRefGoogle Scholar
  220. Markell SG, Milus EA, Chen XM. Genetic diversity of Puccinia striiformis f. sp. tritici in the United States. In: Proceedings of the 11th international cereal rusts and powdery mildews conference 22–27 August 2004. Norwich: John Innes Centre; 2004. p. A2.43.Google Scholar
  221. Marshall D, Sutton RL. Epidemiology of stripe rust, virulence of Puccinia striiformis f. sp. hordei, and yield loss in barley. Plant Dis. 1995;79:732–7.CrossRefGoogle Scholar
  222. Mboup M, Leconte M, Gautier A, Wan AM, Chen W, de Vallavieille-Pope C, Enjalbert J. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Genet Biol. 2009;46:299–307.PubMedCrossRefGoogle Scholar
  223. McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002;40:349–79.PubMedCrossRefGoogle Scholar
  224. McFadden HG, Wilson IW, Chapple RM, Dowd C. Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum). Mol Plant Pathol. 2006;7:87–101.PubMedCrossRefGoogle Scholar
  225. McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. Melbourne: CSIRO Publications; 1995. 200 pp.CrossRefGoogle Scholar
  226. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC. Catalogue of gene symbols for wheat. 12th international wheat genet symposium, 8–13 September 2013, Yokohama, Japan. 2013a. Online: http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed 29th Dec 2016.
  227. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC. Catalogue of gene symbols for wheat: 2013–2014 supplement. 2014.Google Scholar
  228. Mehta KC. Rusts of wheat and barley in India. Indian J Agric Sci. 1933;3:939–62.Google Scholar
  229. Melching JS, Stanton JR, Koogle DL. Deleterious effects of tobacco smoke on germination and infectivity of spores of Puccinia graminis tritici and on germination of spores of Puccinia striiformis, Pyricularia oryzae and an Alternaria species. Phytopathology. 1974;64:1143–7.CrossRefGoogle Scholar
  230. Mendgen K, Hahn M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 2002;7:352–6.PubMedCrossRefGoogle Scholar
  231. Mendgen K, Struck C, Voegele RT, Hahn M. Biotrophy and rust haustoria. Physiol Mol Plant Pathol. 2000;56:141–5.CrossRefGoogle Scholar
  232. Milus EA, Seyran E, McNew R. Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the southcentral United States. Plant Dis. 2006;90:847–52.CrossRefGoogle Scholar
  233. Milus EA, Kristensen K, Hovmøller MS. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology. 2009;99:89–94.PubMedCrossRefGoogle Scholar
  234. Milus EA, Moon DE, Lee KD, Mason RE. Race-specific adult-plant resistance in winter wheat to stripe rust and characterization of pathogen virulence patterns. Phytopathology. 2015;105:1114–22.PubMedCrossRefGoogle Scholar
  235. Miranda-Saavedra D, Barton GJ. Classification and functional annotation of eukaryotic protein kinases. Proteins. 2007;68:893–914.PubMedCrossRefGoogle Scholar
  236. Mitin N, Rossman KL, Der CJ. Signaling interplay in Ras superfamily function. Curr Biol. 2005;15:R563–74.PubMedCrossRefGoogle Scholar
  237. Müller P, Katzenberger JD, Loubradou G, Kahmann R. Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryotic Cell. 2003;2:609–17.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Murphy LR, Santra D, Kidwell K, Yan GP, Chen XM, Campbell KG. Linkage maps of wheat stripe rust resistance genes Yr5 and Yr15 for use in marker assisted selection. Crop Sci. 2009;49:1786–90.CrossRefGoogle Scholar
  239. Nagarajan S. Annual report 1983. Indian Agric Res Inst, Regional Station, Flowerdale, Simla. 1983.Google Scholar
  240. Nagarajan S, Singh DV. Long-distance dispersion of rust pathogens. Annu Rev Phytopathol. 1990;28:139–53.PubMedCrossRefGoogle Scholar
  241. Nagarajan S, Bahdur P, Nayar SK. Occurrence of a new virulence, 47S102 of Puccinia striiformis West., in India during the crop year 1982. Cereal Rusts and Powdery Mildews Bulletin. 1984;12:28–31.Google Scholar
  242. Nagarajan S, Nayar SK, Bahadur P. Race 13 (67S8) of Puccinia striiformis virulent on Triticum spelta var. album in India. Plant Dis. 1986;70:173.CrossRefGoogle Scholar
  243. Nelson RR, Wilcoxon RD, Christensen JJ. Heterokaryosis as basis for variation in Puccinia graminis var. tritici. Phytopathology. 1955;45:639–43.Google Scholar
  244. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell. 1994;79:353–64.PubMedCrossRefGoogle Scholar
  245. Newton M, Johnson T. Stripe rust, Puccinia glumarum, in Canada. Can J Res. 1936;14:89–109.CrossRefGoogle Scholar
  246. Newton M, Johnson T, Brown AM. Stripe rust in Canada. Phytopathology. 1933;23:25–6.Google Scholar
  247. Newton AC, Caten CE, Johnson R. Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol. 1985;34:235–47.CrossRefGoogle Scholar
  248. Newton AC, Johnson R, Caten CE. Attempted somatic hybridization of P. striiformis f. sp. tritici and P. striiformis f. sp. hordei. Plant Pathol. 1986;35:108–13.CrossRefGoogle Scholar
  249. Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H. Systematic functional analysis of calcium-signaling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol. 2008;68:1348–65.PubMedCrossRefGoogle Scholar
  250. Niu YC, Li ZQ, Shuang HS. On the physiological specialization of barley stripe rust in China. Acta Phytopathol Sinica. 1994;24:285–8.Google Scholar
  251. O’Brien L, Brown JS, Young RM, Pascoe I. Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Aus Plant Pathol. 1980;9:14.CrossRefGoogle Scholar
  252. Oort AJP. Verspreiding en verwantshap van physiologische rassen van gele roest (Puccinia glumarum) van tarwe in Europa. Tijidschr PIZiekt. 1955;61:202–19.Google Scholar
  253. Orr HA. Fitness and its role in evolutionary genetics. Nat Rev Genet. 2009;10:531–9.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Pan JJ, Luo Y, Huang C, Sun ZY, Zhao L, Yan JH, Ma ZH. Application of real-time PCR to establish the quantitative detection of latent infection of wheat stripe rust quantity method. Acta Phytopathol Sin. 2010;40:504–10.Google Scholar
  255. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell. 2006;18:2822–35.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JD, Ma H. Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.). Mol Biol Rep. 2010;37:1081–8.PubMedCrossRefGoogle Scholar
  257. Perveen A, Qaiser M. Pollen flora of Pakistan–LXV. Berberidaceae. Pak J Bot. 2010;42:1–6.Google Scholar
  258. Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, Duplessis S, Kamoun S. Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies. PLoS ONE. 2016;11:e0149035.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Phillips AJ, Crowe JD, Ramsdale M. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA. 2006;103:726–31.PubMedPubMedCentralCrossRefGoogle Scholar
  260. Posada-Buitrago ML, Frederick RD. Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Fungal Genet Biol. 2005;42:949–62.PubMedCrossRefGoogle Scholar
  261. Poulin R. Evolutionaryk. Princeton: Princeton University Press; 2007.Google Scholar
  262. Prasada R, Lele VC. New physiologic races of wheat rusts in India. Indian Phytopathol. 1952;5:128–9.Google Scholar
  263. Prasada R, Joshi LM, Singh SD, Misra DF, Goel LB, Kumari K, Sharma SK, Joshi PC, Ahmad ST. Occurrence of physiologic races of wheat and barley rusts in India during 1962–64 and their sources of resistance. Indian J Agric Sci. 1967;37:273–81.Google Scholar
  264. Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS. Challenges for sustainable rust control in South Africa. Aus J Agric Res. 2007;58:593–601.CrossRefGoogle Scholar
  265. Priestley RH, Doling DA. Aggressiveness of Puccinia striiformis isolates on wheat cultivars. Trans Br Mycol Soc. 1974;63:549–57.CrossRefGoogle Scholar
  266. Priestley RH, Doodson JK. Physiological specialization of Puccinia striiformis to adult plants of winter wheat cultivars in the United Kingdom. In: Proceedings of the fourth European and Mediterranean cereal rusts conference. Interlaken, Switzerland. 1976. p. 87–9.Google Scholar
  267. Qiang ZF, Hou SY, Zhang G. Measurements of parasitic fitness for Puccinia striiformis f. sp. tritici. J Shangdong Agric University. 1999;30:94–6. (in Chinese)Google Scholar
  268. Ramsdale M. Programmed cell death in pathogenic fungi. Biochim Biophys Acta. 2008;1783:1369–80.PubMedCrossRefGoogle Scholar
  269. Rapilly F. Yellow rust epidemiology. Annu Rev Phytopathol. 1979;17:59–73.CrossRefGoogle Scholar
  270. Ray R, Gururaja KV, Ramchandra TV. Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. J Environ Biol. 2011;32:725–30.PubMedGoogle Scholar
  271. Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun M-H, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. Comparative genomics of MAP kinase and calcium-calcineurin signaling components in plant and human pathogenic fungi. Fungal Genet Biol. 2009;46:287–98.PubMedCrossRefGoogle Scholar
  272. Rodríguez-García MF, Huerta-Espino J, Villaseñor-Mir HE, Sandoval Islas JS, Singh RP. Analysis of wheat (Triticum aestivum L.) yellow rust (Puccinia striiformis f. sp. tritici) virulence in the high valleys of Mexico. Agrociencia. 2010;44:491–502.Google Scholar
  273. Roelfs AP. Race specificity and methods of study. In: Bushnell RW, Roelfs AP, editors. The cereal rusts, vol. I: Origins, specificity, structure and physiology. New York: Academic; 1984. p. 131–64.Google Scholar
  274. Roose-Amsaleg C, de Vallavieille-Pope C, Brygoo Y, Levis C. Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis Westend. f. sp. tritici, the causal agent of wheat yellow rust. Mycological Research. 2002;106:918–24.CrossRefGoogle Scholar
  275. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH. Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet. 2013;126:2427–49.PubMedPubMedCentralCrossRefGoogle Scholar
  276. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80:1483–521.PubMedGoogle Scholar
  277. Sacrisan S, Garcia-Arenal F. The evolution of virulence and pathogenicity in plant pathogen populations. Mol Plant Pathol. 2008;9:369–48.CrossRefGoogle Scholar
  278. Safavi SA, Babai-Ahari A, Afshari F, Arzanlou M. Effect of yellow rust on yield components of barley cultivars with race-specific and slow rusting resistance to yellow rust. Arch Phytopathol Plant Prot. 2012;45:1488–98.CrossRefGoogle Scholar
  279. Safavi SA, Jahani-Jelodar Y, Ebrahimnejad S. Virulence patterns of barley yellow rust and effective resistance genes to Puccinia striiformis in three parts of Iran. Arch Phytopathol Plant Prot. 2013;46:903–10.CrossRefGoogle Scholar
  280. Saiki RK, Scharf S, Faloona F, Mullis KB, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.PubMedCrossRefGoogle Scholar
  281. Schachtel GA, Dinoor A, Herrmann A, Kosman E. Comprehensive evaluation of virulence and resistance data: A new analysis tool. Plant Dis. 2012;96:1060–3.CrossRefGoogle Scholar
  282. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkötter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R. Pathogenicity determinants in smut fungi revealed by genome comparison. Science. 2010;330:1546–8.PubMedCrossRefGoogle Scholar
  283. Shahin A, Aly AAA. Wheat stripe and stem rust situation in Egypt: Yr27 and Sr31 virulence. Abstract of 2015 Borlaug Global Rust Initiative Technical Workshop. 2015. http://www.globalrust.org/content/wheat-stripe-and-stem-rust-situation-egypt-yr27-and-sr31-virulence. Accessed 13 Nov 2016.
  284. Shahin AA, Youssef WA, Abu Aly AA, Ashmawy MA. Virulence and diversity of the stripe rust pathogen in Egypt, 2009 to 2013. In: Poster Index, Borlaug Global Rust Initiative 2014 Technical Workshop 22–25 March, 2014, Universidad La Salle Noroeste Cd. Obregón, Mexico. 2014. p. 8. http://www.globalrust.org/sites/default/files/2014%20BGRI%20Poster%20Abstracts-Monitoring%20the%20Pathogens.pdf. Accessed 24 Sept 2016.
  285. Shan WX, Chen SY, Zhang GY, Wu LR, Li ZQ. Identification of a family of dispersed, moderately repetitive DNA sequences in an obligate fungal plant pathogen Puccinia striiformis. Sci China (Ser B). 1997;27:241–6.Google Scholar
  286. Shan WX, Chen SY, Kang ZS, Wu LR, Li ZQ. Genetic diversity in Puccinia striiformis Westend. f. sp. tritici revealed by pathogen genome-specific repetitive sequence. Can J Bot. 1998;76:587–95.Google Scholar
  287. Shang HS, Jing JX, Li ZQ. Mutations induced by ultraviolet radiation affecting virulence in Puccinia striiformis. Acta Phytopathol Sin. 1994;25:347–51.Google Scholar
  288. Sharma S. Virulence monitoring and detection of leaf and yellow rust resistance genes in Nepalese wheat varieties. Flowerdale: DWR Regional Station; 1997. 25 pp.Google Scholar
  289. Sharma SK, Singh S, Goel LB. Note on a new record of Sonalika infecting race of yellow rust in India and sources of its resistance. Indian J Agric Sci. 1973;43:964–5.Google Scholar
  290. Sharma-Poudyal D, Chen XM, See D. Genetic diversity of international collections of Puccinia striiformis f. sp. tritici. Phytopathology. 2012;102(Suppl 4):S4.30.Google Scholar
  291. Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS, Cao SQ, Jin SL, Morgounov A, Akin B, Mert Z, Shah SJA, Bux H, Ashraf M, Sharma RC, Madariaga R, Puri KD, Wellings CR, Xi KQ, Manninger K, Wanyera R, Ganzalez MI, Koyda M, Sanin S, Patzek LJ. Viruelnce characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013;97:379–86.CrossRefGoogle Scholar
  292. Sharma-Poudyal D, Chen XM, Rupp R. Potential oversummering and overwintering regions for the wheat stripe rust pathogen in the contiguous United States. Int J Biometeorol. 2014;58:987–97.PubMedCrossRefGoogle Scholar
  293. Sharon A, Finkelstein A, Shlezinger N, Hatam I. Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev. 2009;33:833–54.PubMedCrossRefGoogle Scholar
  294. Sharp EL. Atmospheric ions and germination of urediospores of Puccinia striiformis. Science. 1967;156:1359–60.Google Scholar
  295. Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol. 2001;32:169–81.PubMedCrossRefGoogle Scholar
  296. Shurtleff MC, Averre III CW. Glossary of plant-pathological terms. St. Paul: APS Press; 1997. 361 pp.Google Scholar
  297. Sørensen CK, Thach T, Hovmøller MS. Evaluation of spray and point inoculation methods for the phenotyping of Puccinia striiformis on wheat. Plant Dis. 2016;100:1064–70.CrossRefGoogle Scholar
  298. Spanu PD. The genomics of obligate (and nonobligate) biotrophs. Annu Rev Phytopathol. 2012;50:91–109.PubMedCrossRefGoogle Scholar
  299. Steele KA, Humphreys E, Wellings CR, Dickinson MJ. Support of s stepwise mutation model for pathogen evolution in Asutralasin Puccinia striiformis f. sp. tritici by use of molecular markers. Plant Pathol. 2001;50:174–80.CrossRefGoogle Scholar
  300. Steinbach WJ, Reedy JL, Cramer Jr RA, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol. 2007;5:418–30.PubMedCrossRefGoogle Scholar
  301. Stergiopoulos I, de Wit PJGM. Fungal effector proteins. Annu Rev Phytopathol. 2009;47:233–63.PubMedCrossRefGoogle Scholar
  302. Stie J, Fox D. Calcineurin regulation in fungi and beyond. Eukaryot Cell. 2008;7:177–86.PubMedCrossRefGoogle Scholar
  303. Straib W. Auftreten und Verbreitung biologischer Rassen des Gelbrostes (Puccinia glumarum (Schm.) Erikss. et Henn.) im Jahre 1934. Arb Biol Reichsanst Land= Forstwirtsch, Berlin-Dahlem. 1935;21:455–66.Google Scholar
  304. Stubbs RW. Artificial mutation in the study of the relationship between races of yellow rust of wheat. Proc Eur Mediterr Cereal Rusts Conf. 1968;1968:60–2.Google Scholar
  305. Stubbs RW. Stripe rust. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, Disease, distribution, epidemiology, and control, vol. II. New York: Academic; 1985. p. 61–101.Google Scholar
  306. Stubbs RW. Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a global context. In: Simmonds NW, Rajaram S, editors. Breeding strategies for resistance to the rust of wheat. Mexico: CIMMYT; 1988. p. 23–38.Google Scholar
  307. Stubbs RW, Fuchs E, Vecht H, Basset EJW. The international survey of factors of virulence of Puccinia striiformis Westend. in 1969, 1970 and 1971. Technische Bericht Nr. 21, Wageningen: Nederlands Graan-Centrum; 1974.Google Scholar
  308. Sui XX, Wang MN, Chen XM. Molecular mapping of a stripe rust resistance gens in spring wheat cultivar Zak. Phytopathology. 2009;99:1209–15.PubMedCrossRefGoogle Scholar
  309. Sun P, Zeng SM. Estimation of relative parstitic fitness of pathogens in herterogeneous host populations. Phytopathology. 1995;85:520–1.Google Scholar
  310. Szabo LJ, Bushnell WR, Hidden robbers. The role of fungal haustoria in parasitism of plants. Proc Natl Acad Sci USA. 2001;98:7654–5.PubMedPubMedCentralCrossRefGoogle Scholar
  311. Takamatsu S. PCR applications in fungal phylogeny. In: Bridge PD, Arora DK, Reddy CA, Elander RP, editors. Applications of PCR in mycology. Wallingford: CAB International; 1998. p. 125–52.Google Scholar
  312. Tang CL, Wei JP, Han QM, Liu R, Duan XY, Fu YP, Huang XL, Wang XJ, Kang ZS. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth. Sci Rep. 2015;5:11241.PubMedPubMedCentralCrossRefGoogle Scholar
  313. Taylor EC. The production of behavior of somatic recombinants in Puccinia striiformis. Proc Eur Medit Cereal Rust Conf in Terlaken. 1976;4:36–8.Google Scholar
  314. Thach T, Ali S, Justesen AF, Rodriguez-Algaba J, Hovmøller MS. Recovery and virulence phenotyping of the historic ‘Stubbs collection’ of the yellow rust fungus Puccinia striiformis from wheat. Ann Appl Biol. 2015;167:314–26.CrossRefGoogle Scholar
  315. Thach T, Ali S, de Vallavieille-Pope C, Justesen AF, Hovmøller MS. Worldwide population structure of the wheat rust fungus Puccinia striiformis in the past. Fungal Genet Biol. 2016;87:1–8.PubMedCrossRefGoogle Scholar
  316. Thara VK, Fellers JP, Zhou JM. In planta induced genes of Puccinia triticina. Mol Plant Pathol. 2003;4:51–6.PubMedCrossRefGoogle Scholar
  317. Tian HM, Liu TG, Gao L, Chen WQ. Parasitic fitness of four prevalent races of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin. 2008;38:599–606.Google Scholar
  318. Tian Y, Zhan GM, Chen XM, Tungruentragoon A, Lu X, Zhao J, Huang LL, Kang ZS. Virulence and SSR marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology. 2016;106:185–91.PubMedCrossRefGoogle Scholar
  319. Tooley PW, Fry WE. Field assessments of fitness of isolates of Phytophthora infestans. Phytopathology. 1985;75:982–8.CrossRefGoogle Scholar
  320. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 2003;13:1675–85.PubMedPubMedCentralCrossRefGoogle Scholar
  321. Tran VA, Kutcher HR. Temperature effects on the aggressiveness of Puccinia striiformis f. sp. tritici, stripe rust of wheat. Proceedings of on-line conference proceedings of soils and crops, University of Saskatchewan. 2015. http://www.usask.ca/soilsncrops/conference-proceedings/2015%20pdf/day-1-presentations/room-1-008-tran.pdf
  322. Upadhyaya NM, Mago R, Staskawicz BJ, Ayliffe MA, Ellis JG, Dodds PN. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat. Mol Plant Microbe Interact. 2014;27:255–64.PubMedCrossRefGoogle Scholar
  323. Urban M, Mott E, Farley T, Hammond-Kosack K. The Fusariumgraminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Path. 2003;4:347–59.CrossRefGoogle Scholar
  324. Vidhyasekara P. Concise encyclopedia of plant pathology. New York: Food Products Press; 2004. 619 pp.Google Scholar
  325. Virag A, Griffiths AJF. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet Biol. 2004;41:213–25.PubMedCrossRefGoogle Scholar
  326. Virag A, Harris SD. The Spitzenkörper: a molecular perspective. Mycol Res. 2006;110:4–13.PubMedCrossRefGoogle Scholar
  327. Visser B, Herselman L, Pretorius ZA. Microsatellite characterisation of South African Puccinia striiformis races. South African J Plant Soil. 2016;33:163–6.CrossRefGoogle Scholar
  328. Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S. Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol. 2011;49:507–31.PubMedCrossRefGoogle Scholar
  329. Voegele RT, Struck C, Hahn M, Mendgen K. The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA. 2001;98:8133–8.PubMedPubMedCentralCrossRefGoogle Scholar
  330. Volin RB, Sharp EL. Physiologic specialization and pathogen aggressiveness in stripe rust. Phytopathology. 1973;63:699–703.CrossRefGoogle Scholar
  331. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  332. Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PloS Biol. 2010;8(2):e1000303. doi: 10.1371/journal.pbio.1000303.PubMedPubMedCentralCrossRefGoogle Scholar
  333. Wan AM, Chen XM (2011) Races and virulences of Puccinia striiformis in the United States in 2010. In: Oral Presentations, Poster Abstracts, Participants and Program of BGRI Technical Workshop, June 13-16, 2011, St. Paul, MN, USA, pp 165Google Scholar
  334. Wan AM, Chen XM. Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Dis. 2012a;96:67–74.CrossRefGoogle Scholar
  335. Wan AM, Chen XM. Stripe rust epidemics of wheat and barley and races of Puccinia striiformis identified in the United States in 2011. Phytopathology. 2012b;102:S4.130.Google Scholar
  336. Wan AM, Chen XM. Stripe rust epidemics of wheat and barley and races of Puccinia striiformis identified in the United States in 2012. Phytopathology. 2013;103(Suppl 2):S2.155.Google Scholar
  337. Wan AM, Chen XM. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis. 2014a;98:1534–42.CrossRefGoogle Scholar
  338. Wan AM, Chen XM. Stripe rust epidemics of wheat and barley and races of Puccinia striiformis identified in the United States in 2013. Phytopathology. 2014b;104(Suppl 3):S3.125.Google Scholar
  339. Wan AM, Chen XM. Stripe rust epidemics of wheat and barley and races of Puccinia striiformis identified in the United States in 2014. Phytopathology. 2015;105(Suppl. 4):S4.144.Google Scholar
  340. Wan AM, Chen XM. Variation of telial formation in the Puccinia striiformis f. sp. tritici population. Phytopathology. 2016;S4:206–7.Google Scholar
  341. Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 2004;88:896–904.CrossRefGoogle Scholar
  342. Wan AM, Wang MN, Chen XM. Regional differences in genetic structure of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the U.S. revealed by SSR markers. Phytopathology. 2014;104(Suppl 3):S3.125.Google Scholar
  343. Wan Q, Liang JM, Luo Y, Ma ZH. Population genetic structure of Puccinia striiformis in Northwestern China. Plant Dis. 2015;99:174–1774.CrossRefGoogle Scholar
  344. Wan AM, Chen XM, Yuen J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis. 2016;100:966–75.CrossRefGoogle Scholar
  345. Wan AM, Muleta KT, Zegeye H, Hundie B, Pumphrey MO, Chen XM. Virulence characterization of wheat stripe rust fungus Puccinia striiformis f. sp. tritici in Ethiopia. Plant Dis. 2017;101:73–80.CrossRefGoogle Scholar
  346. Wang ZH. On the evolution of the barley-yellow rust pathosystem in Tibet. Acta Phytopathol Sinica. 1992;22:151–5.Google Scholar
  347. Wang MN, Chen XM. First report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Dis. 2013;97:839.CrossRefGoogle Scholar
  348. Wang MN, Chen XM. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the US Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis. 2015;99:1500–6.CrossRefGoogle Scholar
  349. Wang KN, Hong XW, Si QM, Wang JX, Shen JP. Studies of the physiological specialization of stripe rust of wheat in China. Chin J Plant Prot. 1963;2:23–35.Google Scholar
  350. Wang ZH, Peng YL, Yangjin L, Da Z. Difference of pathogenicity between isolates of barley-attacking and wheat-attacking forms of Puccinia striiformis with special reference to the deviation of disease development. Acta Phytopathol Sinica. 1989a;19:161–5.Google Scholar
  351. Wang ZH, Yangjin L, Da Z, Peng YL. A preliminary study on the physiologic specialization of Puccinia striiformis f. sp. hordei in Tibet. Chin J Plant Prot. 1989b;16:186–92.Google Scholar
  352. Wang Y, Wang MN, Zhang RJ, Xu CG, Feng Q, Li ZQ. Transient expression of transformed genes by particle bombardment. Acta Botanica Boreali-Occidentalia. 2006;26:115–8.Google Scholar
  353. Wang XJ, Zheng WM, Buchenauer H, Zhao J, Han QM, Huang LL, Kang ZS. The development of a PCR-based method for detecting Puccinia striiformis latent infections in wheat leaves. Eur J Plant Pathol. 2008;120:241–7.CrossRefGoogle Scholar
  354. Wang BT, Li GB, Li Q, Wang F, Shi YQ, Liu QR, Kang ZS. Parasitic fitness of the major epidemic strains of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin. 2009a;103:82–7.Google Scholar
  355. Wang XJ, Chen JL, Buchenauer H, Zhao J, Han QM, Huang LL, Kang ZS. Detection of Puccinia striiformis in latently infected wheat leaves by nested polymerase chain reaction. J Phytopathol. 2009b;157:490–3.CrossRefGoogle Scholar
  356. Wang XJ, Tang CL, Zhang G, Li YC, Wang CF, Liu B, Qu ZP, Zhao J, Han QM, Huang LL, Chen XM, Kang ZS. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genom. 2009c;10:289.Google Scholar
  357. Wang XJ, Liu W, Chen XM, Tang CL, Dong YL, Ma JB, Huang XL, Wei GR, Han Q, Huang LL, Kang ZS. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol. 2010;10:9.PubMedPubMedCentralCrossRefGoogle Scholar
  358. Wang CF, Zhang SJ, Hou R, Zhao ZT, Zheng Q, Xu QJ, Zheng DW, Wang GH, Liu HQ, Gao XL, Ma JW, Kistler HC, Kang ZS, Xu JR. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog. 2011;7:e1002460.PubMedPubMedCentralCrossRefGoogle Scholar
  359. Wang Y, Ma DF, Zhang L, Lu LL, Wang MN, Jing JX, Kang ZS. Hereditary stability and pathogenicity of wheat stripe rust mutants with GUS gene insertion. Acta Phytopathol Sin. 2013;43:42–9.Google Scholar
  360. Wang MN, Wan AM, Chen XM. Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest. Plant Dis. 2015;99:1507–16.CrossRefGoogle Scholar
  361. Wang ZY, Zhao J, Chen XM, Lu YZ, Ji JJ, Zhao SL, Huang LL, Kang ZS. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 2016;100:131–8.CrossRefGoogle Scholar
  362. Weeks G, Spiegelman GB. Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal. 2003;15:901–9.PubMedCrossRefGoogle Scholar
  363. Wellings CR. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979-2006. Aus J Agric Res. 2007;58:567–75.CrossRefGoogle Scholar
  364. Wellings CR. Stripe rust pathotype ‘Jackie Yr27’ detected for the first time. Cereal Rust Report Season 2008, Plant Breeding Institute, University of Sydney, vol 6. 2008. p. 1–3 https://sydney.edu.au/agriculture/documents/pbi/cereal_rust_report_2008_vol_6_8.pdf
  365. Wellings CR. Global status of stripe rust: a review of historical and current threats. Euphytica. 2011;179:129–41.CrossRefGoogle Scholar
  366. Wellings CR, Kandel KR. Pathogen dynamics associated with historic stripe (yellow) rust epidemics in Australia in 2002 and 2003. In: Proceedings of the 11th international cereal rusts and powdery mildews conference. 22–27 August 2004. John Innes Centre, Norwich, UK. European and Mediterranean Cereal Rust Foundation, Wageningen, Netherlands. Cereal Rusts and Powdery Mildew Bulletin, Abstract A2.74. 2004.Google Scholar
  367. Wellings CR, McIntosh RA. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol. 1990;39:316–25.CrossRefGoogle Scholar
  368. Wellings CR, McIntosh RA, Walker J. Puccinia striiformis f. sp. tritici in eastern Australia- possible means of entry and implications for plant quarantine. Plant Pathol. 1987;36:239–41.CrossRefGoogle Scholar
  369. Wellings CR, Burdon JJ, McIntosh RA, Wallwork H, Raman H, Murray GM. A new variant of Puccinia striiformis causing stripe rust on barley and wild Hordeum species in Australia. New Dis Rep. 2000;1:6. http://www.ndrs.org.uk/article.php?id=001006
  370. Wellings CR, Wright DG, Keiper F, Loughman R. First detection of wheat stripe rust in Western Australia: Evidence for a foreign incursion. Aus Plant Pathol. 2003;32:321–2.CrossRefGoogle Scholar
  371. Wellings CR, Singh RP, McIntosh RA, Pretorius ZA. The development and application of near isogenic lines for the stripe (yellow) rust pathosystem. In: Proceedings of the 11th international cereal rusts and powdery mildews conference, 22–27 August 2004, John Innes Centre, Norwich, UK. European and Mediterranean Cereal Rust Foundation, Wageningen, Netherlands. Cereal Rusts and Powdery Mildews Bulletin, Abstract A1.39. 2004. Available from http://www.crpmb.org/icrpmc11/abstracts.htm. Accessed 8 July 2005.
  372. Wellings CR, Singh RP, Yahyaoui A, Nazari K, McIntosh RA. The development and application of near-isogenic lines for monitoring cereal rust pathogens. In: McIntosh RA, editor. Proceedings of the Borlaug global rust initiative technical workshop. Mexico: BGRI Cd Obregon; 2009. p. 77–87.Google Scholar
  373. Wellings CR, Boyd LA, Chen XM. Resistance to stripe rust in wheat: Pathogen biology driving resistance breeding. In: Sharma I, editor. Disease resistance in wheat. CAB International 2012. 2012. p. 63–83.Google Scholar
  374. Welsh J, McClelland M. Fingerprinting genome using PCR with arbitrary primers. Nucleic Acids Res. 1990;19:303–6.CrossRefGoogle Scholar
  375. Wesenberg DM, Burrup DE, Brown WM, Jr Velasco VR, Hill JP, Whitmore JC, Karow RS, Hayes PM. Registration of ‘Bancroft’ barley. Crop Sci. 2001;41:265–6.CrossRefGoogle Scholar
  376. White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996;10:1–15.PubMedCrossRefGoogle Scholar
  377. White BT, Yanofsky C. Structural characterization and expression analysis of the Neuro spora conidiation gene con-6. Dev Biol. 1993;160:254–64.PubMedCrossRefGoogle Scholar
  378. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–5.PubMedPubMedCentralCrossRefGoogle Scholar
  379. Wright RG, Lennard JH. Origin of new race of Puccinia striiformis. Trans Brit Mycol Soc. 1980;74:283–7.CrossRefGoogle Scholar
  380. Xi K, Kumar K, Holtz MD, Turkington TK, Chapman B. Understanding the development and management of stripe rust in central Alberta. Can J Plant Pathol. 2015;37:21–39.CrossRefGoogle Scholar
  381. Xia CJ, Wan AM, Wang MN, Jiwan DA, See DR, Chen XM. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biol. 2016a;120:729–44.PubMedCrossRefGoogle Scholar
  382. Xia CJ, Wang MN, Wan AM, Jiwan DA, See DR, Chen XM. Association analysis of SP-SNPs and avirulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Am J Plant Sci. 2016b;7:126–37.CrossRefGoogle Scholar
  383. Xiang C, Feng JY, Wang MN, Chen XM, See DR, Wan AM, Wang T. Molecular mapping of Yr76 for resistance to stripe rust in winter club wheat cultivar Tyee. Phytopathology. 2016;106:1186–93.PubMedCrossRefGoogle Scholar
  384. Xu JR. MAP kinases in fungal pathogens. Fungal Genet Biol. 2000;31:137–52.PubMedCrossRefGoogle Scholar
  385. Yahyaoui A, Ketata H, Torabi M, Morgounov A, Braun H, Mosaad M, Djumakhanov B, Koichibayev M. Cereal rust monitoring in Central and West Asia and North Africa: current status and future challenges. In: Yahyaoui A, Rajaram S, editors. Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th regional conf yellow rust in the Central and West Asia and North Africa (CWANA) Region. 2005. p. 155–70. https://www.ars.usda.gov/ARSUserFiles/50620500/Publications/ICARDAYellowRustProceedings2004-2006-2010.pdf
  386. Yan GP, Chen XM, Line RF, Wellings CR. Resistance gene analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet. 2003;106:636–43.PubMedCrossRefGoogle Scholar
  387. Yao QY, Wang GF, Xu ZB, Wang MN, Wang Y, Jing JX. Virulent mutant in Puccinia striiformis induced by ethyl methyl sulfomar (EMS). J Northwest Sci-Tech Univ Agric Forest (Natural Sci Edition). 2006;34:120–3.Google Scholar
  388. Yin CT, Chen XM, Wang XJ, Han QM, Kang ZS, Hulbert SH. Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. BMC Genom. 2009;10:626.CrossRefGoogle Scholar
  389. Yin CT, Jurgenson JE, Hulbert SH. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact. 2011;24:554–61.PubMedCrossRefGoogle Scholar
  390. Yin CT, Downey SI, Klasges-Mundt NL, Ramachandran S, Chen XM, Szabo LJ, Pumphrey M, Hulbert SH. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genom. 2015;16:579.CrossRefGoogle Scholar
  391. Yuan CY, Wang MN, See DR, Chen XM. Towards construction of genetic linkages for mapping virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Phytopathology. 2016;S4:208.Google Scholar
  392. Zadoks JC. On the formation of physiologic races in plant parasites. Euphytica. 1959;8:104–16.Google Scholar
  393. Zadoks JC. Yellow rust on wheat: studies in epidemiology and physiologic specialization. Tijdschr Plantenziekten. 1961;67:69–256.Google Scholar
  394. Zadoks JC. Strategies in combating cereal diseases in Europe, with special reference to yellow rust of wheat. In: Proceedings of the rice blast workshop. Philippines: Laguna; 1979. p. 183–98.Google Scholar
  395. Zambino PJ, Szabo LJ. Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia. 1993;85:401–14.CrossRefGoogle Scholar
  396. Zeng SM. Studies on measurement of relative pathogenetic fitness of pathogens (an example of wheat stripe rust). Acta Phytopathol Sin. 1996;26:97–104.Google Scholar
  397. Zeng SM. Parasitic fitness of cultivar–race combinations. In: Zeng SM, Zhang SZ, editors. Epidemiological studies in plant breeding for resistance. Beijing: Scientific Press; 1998. p. 41–54.Google Scholar
  398. Zeng SM, Luo Y. Systems analysis of wheat stripe rust epidemics in China. Eur J Plant Pathol. 2008;121:425–38.CrossRefGoogle Scholar
  399. Zhan GM, Chen XM, Kang ZS, Huang LL, Wang MN, Wan AM, Cheng P, Cao SQ, Jin SL. Comparative virulence phenotypes and molecular genotypes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen in China and the United States. Fungal Biol. 2012;116:643–53.PubMedCrossRefGoogle Scholar
  400. Zhan GM, Wang FP, Chen XM, Wan CP, Han QM, Huang LL, Kang ZS. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Dis. 2016;100:99–107.CrossRefGoogle Scholar
  401. Zhang YH, Qu ZP, Zheng WM, Liu B, Wang XJ, Xue X, Xu LS, Huang LL, Han QM, Zhao J, Kang ZS. Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp. tritici. BMC Genomics. 2008;9:203.PubMedPubMedCentralCrossRefGoogle Scholar
  402. Zhang H, Guo J, Voegele RT, Zhang JS, Duan YH, Luo HY, Kang ZS. Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host-Induced RNAi system. PLoS ONE. 2012;7:e49262.PubMedPubMedCentralCrossRefGoogle Scholar
  403. Zhao LS, Wang HR. Preliminary observation of urediniospore germ tube fusion in the wheat stripe rust fungus. Agric Sci China. 1969;1:48–9.Google Scholar
  404. Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS. A PCR-based assay for detection of Puccinia striiformis f. sp. tritici in wheat. Plant Dis. 2007a;91:1669–74.CrossRefGoogle Scholar
  405. Zhao XH, Mehrabi R, Xu JR. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell. 2007b;6:1701–14.PubMedPubMedCentralCrossRefGoogle Scholar
  406. Zhao J, Wang L, Wang Z, Chen XM, Zhang HC, Yao JN, Zhan GM, Chen W, Huang LL, Kang ZS. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology. 2013;9:927–34.CrossRefGoogle Scholar
  407. Zhao J, Wang MN, Chen XM, Kang ZS. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Ann Rev Phytopathol. 2016;54:207–28.CrossRefGoogle Scholar
  408. Zheng WM, Chen SY, Kang ZS, Wang Y, Li ZQ, Wu LR. Specificity and stability of PSR (Puccinia striiformis Repeat) sequence. Acta Phytopathol Sin. 2000;30:222–5.Google Scholar
  409. Zheng WM, Liu F, Kang Z, Chen SY, Li ZQ, Wu L. AFLP finger-printing of Chinese epidemic strains of Puccinia striiformis f. sp. tritici. Prog Nat Sci. 2001;11:587–93.Google Scholar
  410. Zheng WM, Huang LL, Huang JQ, Wang XJ, Chen XM, Zhao J, Guo J, Zhuang H, Qiu CZ, Liu J, Liu HQ, Huang XL, Pei GL, Zhan GM, Tang CL, Cheng YL, Liu MJ, Zhang JS, Zhao ZT, Zhang SJ, Han QM, Han DJ, Zhang HC, Zhao J, Gao XN, Wang JF, Ni PX, Dong W, Yang LF, Yang HM, Xu JR, Zhang GY, Kang ZS. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nature Commun. 2013;4:2673.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Anmin Wan
    • 1
  • Xiaojie Wang
    • 2
  • Zhensheng Kang
    • 2
  • Xianming Chen
    • 3
    • 1
    Email author
  1. 1.Department of Plant PathologyWashington State UniversityPullmanUSA
  2. 2.State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
  3. 3.US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research UnitPullmanUSA

Personalised recommendations