Bio-chemical Process Monitoring with Terahertz Sensor

  • Y. Zhang
  • V. Matvejev
  • S. Declerck
  • S. Stroobants
  • G. Pandey
  • G. He
  • D. Mangelings
  • D. Maes
  • S. Muyldermans
  • J. Stiens
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

An in-house developed Label-free Immobilization-free Terahertz (THz) sensor has shown its potential in various applications [1]. In this paper, we present the experimental results in the field of High Performance Liquid Chromatography (HPLC) and protein crystallization. Ultra-Violet (UV) detectors are very commonly used as a detection technique in HPLC systems. However, it relies on labelling when target substances do not absorb UV light. Therefore, it has the drawback of increased cost and time consumption. Our experimental result shows that THz sensor has the potential to replace UV sensor integrated on the HPLC machine as it is able to detect both UV and non-UV absorbing substances without labelling. Meanwhile, the THz sensor is also deployed for the first time to follow a protein crystallization process.

Keywords

Millimeter wave HPLC Protein crystallization THz Dielectric permittivity 

Notes

Acknowledgments

The authors acknowledge the Vrije Universiteit Brussel (VUB) through the SRP-project M3D2, the FWO-Vlaanderen through FWOAL682 “Building blocks of lab-on-chip system for label-free monitoring of bio-molecular interactions” and the FWOAL611 “Millimeter wave sensor solutions for chromatographic analyzer systems of today and tomorrow”, the, the COST-action MP1204, TERAMIR the NATO support for the Workshop on THz Diagnostics of CBRN effects and Detection of Explosives & CBRN.

References

  1. 1.
    V. Matvejev, et al. Integrated waveguide structure for highly sensitive THz spectroscopy of nano-liter liquids in capillary tubes, Progress in Electromagnetic Research, 121, 89–101 (2011)Google Scholar
  2. 2.
    Leitner, D.M., et al. Solvation dynamics of biomolecules: modeling and terahertz experiments, HFSP J., 2008, 2, (6), pp. 314–323Google Scholar
  3. 3.
    V. Matvejev, Y. Zhang, J. Stiens, High performance integrated THz sensor for detection of biomolecular processes in solution, IET Microwaves, Antennas & propagation, 8(6), 394–400 (2014)Google Scholar
  4. 4.
    Weina Liu, A Novel Technology for Measurements of Dielectric Properties of Extremely Small Volumes of Liquids, International Journal of Antennas and Propagation, Volume 2016, Article ID 1436798, 5 pagesGoogle Scholar
  5. 5.
    Cui Y., Y. He, P. Wang. “A Quadrature-Based Tunable Radio-Frequency Sensor for the Detection and Analysis of Aqueous Solutions” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 24, pp. 490–492, 2014.Google Scholar
  6. 6.
    R. Mendis, V. Astley, J. Liu, D.M. Mittleman, Appl. Phys. Lett 95, 171113 (2009)Google Scholar
  7. 7.
    S. M. Hanham et al. APPLIED PHYSICS LETTERS 107, 032903 (2015)Google Scholar
  8. 8.
    Vaishali Rawat et al., Journal of Applied Physics 116, 164106 (2014)Google Scholar
  9. 9.
    M. Neshat et al., Elect Lett 44(17), 1020 (2008)Google Scholar
  10. 10.
    L. Wendling, et al. Real Time Monitoring and Detection of Alcohol Using Microwave Sensor Technology, IEEE Proc. Conf. Developm eSystems, 2009Google Scholar
  11. 11.
    N. Wiwatcharagoses, et al, Michigan State Uni report 2009Google Scholar
  12. 12.
    A. Sklavounos, N. Barker, IRMMWTHz-IEEE Proc, p2 (2011)Google Scholar
  13. 13.
    Laurette, S, et al. Subterahertz characterization of ethanol hydration layers by microfluidic system, Applied Physics Letters, 97, 111904 (2010), DOI:http://dx.doi.org/10.1063/1.3488832
  14. 14.
    T. Chretiennot et al. A Microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions. IEEE Trans Microw Theory Techn. 2013 Feb;61(2):972–978Google Scholar
  15. 15.
    W.W. Christie. Detectors for HPLC of lipids with special reference to evaporative lightscattering detection. In Advances in Lipid Methodology – One. Edited by W.W. Christie, Oily Press, Ayr. pp. 1992. 239–271Google Scholar
  16. 16.
    N. E. Chayen, “Turning protein crystallisation from an art into a science,” Current Opinion in Structural Biology, vol. 14, pp. 577–583, Oct. 2004Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Y. Zhang
    • 1
  • V. Matvejev
    • 1
  • S. Declerck
    • 2
  • S. Stroobants
    • 3
  • G. Pandey
    • 1
  • G. He
    • 1
  • D. Mangelings
    • 2
  • D. Maes
    • 3
  • S. Muyldermans
    • 4
  • J. Stiens
    • 1
  1. 1.Laboratory of Micro- and Photoelectronics, LAMI-ETROVrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research (CePhaR)Vrije Universiteit Brussel-VUBBrusselsBelgium
  3. 3.Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
  4. 4.Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselBelgium

Personalised recommendations