Skip to main content

The Linewidth Enhancement Factor of Dilute Nitride Intersubband Lasers Without Inversion

  • Conference paper
  • First Online:
THz for CBRN and Explosives Detection and Diagnosis

Abstract

The linewidth enhancement (α factor) due to fluctuations in the refractive index induced by carrier fluctuations of intersubband lasers was initially expected to be zero. However, values ranging from −0.5 to 3 have been found experimentally. For laser without inversion conditions, which have potential for the high temperature operation of terahertz lasers, α is found to be larger, but still at the same order of magnitude of conventional inverted medium lasers and this paper further investigates this case for dilute nitride quantum well structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. L. Schawlow and C. H. Townes, Infrared and Optical Masers, Phys. Rev. 112 (6), 1940–1949 (1958).

    Google Scholar 

  2. C. H. Henry, Theory of linewidth of semiconductor lasers, IEEE J. Quantum Electronics QE-18, pp. 259–264 (1982).

    Google Scholar 

  3. M.F. Pereira Jr., S.W. Koch and W.W. Chow, Effects of strain and Coulomb interaction on gain and refractive index in quantum-well lasers J. Opt. Soc. Am. B10, 765–773 (1993).

    Google Scholar 

  4. M. Lerttamrab, S.L. Chung, C. Gmachl, D. L Sivco, F. Capasso and A.Y. Cho, Linewidth enhancement factor of a type-I quantum-cascade laser, J. Appl. Phys. 94, 5426–5428 (2003).

    Google Scholar 

  5. J. von Staden, T. Gensty, M. Peil, W. Elsaesser, G. Giuliani, and C. Mann, Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique, Opt. Lett. 31, 2574–2576 (2006).

    Google Scholar 

  6. L. Jumpertz, F. Michel, R. Pawlus, W. Elsasser, K. Schires, M. Carras, and F. Grillot, Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques AIP ADVANCES 6, 015212-1–015212-7 (2016).

    Google Scholar 

  7. R. P. Green, J.-H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, Linewidth enhancement factor of terahertz quantum cascade lasers, Appl. Phys. Lett. 92, 071106-1–071106-3 (2008).

    Google Scholar 

  8. M.F. Pereira, The Linewidth Enhancement Factor of Intersubband Lasers: From a Two-Level Limit to Gain without Inversion Conditions, Applied Physics Letters 109, 222102-1–222102-4(2016).

    Google Scholar 

  9. M.F. Pereira, TERA-MIR radiation: materials, generation, detection and applications II, Opt Quant Electron 47, 815–820 (2015).

    Google Scholar 

  10. M.F. Pereira and I.A. Faragai, Coupling of THz radiation with intervalence band transitions in microcavities, Optics Express 22, 3439–3446 (2014).

    Google Scholar 

  11. M. F. Pereira Jr., Intervalence electric mode terahertz lasing without population inversion, Phys. Rev. B 78, 245305-1–245305-5 (2008).

    Google Scholar 

  12. R. Nelander, A. Wacker, M.F. Pereira Jr, D.G. Revin, M.R. Soulby, L.R. Wilson, J.W. Cockburn, A.B. Krysa, J.S. Roberts, and R.J. Airey, J. Appl. Phys. 102, 113104-1–113104-5 (2007).

    Google Scholar 

  13. M. F. Pereira and S. Tomić, Intersubband gain without global inversion through dilute nitride band engineering, Appl. Phys. Lett. 98, 061101-1–061101-3 (2011).

    Google Scholar 

  14. M.F. Pereira Jr., Microscopic approach for intersubband-based thermophotovoltaic structures in the THz and Mid Infrared, JOSA B28, 2014–2017 (2011).

    Google Scholar 

  15. T. Schmielau and M.F. Pereira Jr., Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers, Appl. Phys. Lett. 95, 231111-1–231111-3 (2009).

    Google Scholar 

  16. T. Schmielau and M.F. Pereira, Microelectronics Journal 40, 869–871 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Fernandes Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pereira, M.F. (2017). The Linewidth Enhancement Factor of Dilute Nitride Intersubband Lasers Without Inversion. In: Pereira, M., Shulika, O. (eds) THz for CBRN and Explosives Detection and Diagnosis. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1093-8_22

Download citation

Publish with us

Policies and ethics