Anisotropic Medium Approach for the Optical Nonlinearities of Dilute Nitride Superlattices

  • C. I. Oriaku
  • T. J. Spencer
  • M. F. Pereira
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


In this paper we investigate optical nonlinearities in semiconductor superlatitces designed with alternate layers of dilute nitride, GaAsN quantum wells and AlGaAs and barriers. The anisotropic medium approach is used to obtain analytical expressions. The analysis confirms that the nonlinearities increase with anisotropy, extending the anisotropic medium approach to dilute nitride systems.


Many body effects Optical nonlinearities Superlattices Anisotropic medium approach 



The authors acknowledge support from COST ACTION MP1204, TERA-MIR Radiation: Materials, Generation, Detection and Applications.


  1. 1.
    A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Reports 357, 1–111 (2002).Google Scholar
  2. 2.
    M.F. Pereira Jr., Analytical solutions for the optical absorption of superlattices, Phys. Rev. B 52, 1978–1983 (1995).Google Scholar
  3. 3.
    M.F. Pereira, TERA-MIR radiation: materials, generation, detection and applications II, Opt Quant Electron 47, 815–820 (2015).Google Scholar
  4. 4.
    Y. Hua, K. Chandra , D.H. Dam, G.P. Wiederrecht and T.W. Odom, Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles, J Phys Chem Lett. 6, 4904–4908 (2015).Google Scholar
  5. 5.
    M. F. Pereira, Anisotropy and Nonlinearity in Superlattices, Optical and Quantum Electronics 48, 321-1–321-7 (2016).Google Scholar
  6. 6.
    M. F. Pereira, Anisotropy and Nonlinearity in Superlattices II, Optical and Quantum Electronics 48, 423-1 – 423 - 8(2016).Google Scholar
  7. 7.
    M.F. Pereira and I.A. Faragai, Coupling of THz radiation with intervalence band transitions in microcavities, Optics Express 22, 3439–3446 (2014).Google Scholar
  8. 8.
    M. F. Pereira Jr. Intersubband antipolaritons: microscopic approach, Phys. Rev. B 75, 195301-1–195301-5 (2007).Google Scholar
  9. 9.
    M. F. Pereira Jr., Intervalence electric mode terahertz lasing without population inversion, Phys. Rev. B 78, 245305-1–245305-5 (2008).Google Scholar
  10. 10.
    M.F. Pereira Jr, R. Nelander, A. Wacker, D.G. Revin, M.R.Soulby, L.R. Wilson, J.W. Cockburn, A.B. Krysa, J.S. Roberts, and R.J. Airey, Characterization of intersubband devices combining a nonequilibrium many body theory with transmission spectroscopy experiments, Journal of Materials Science: Materials in Electronics 18, 689–694 (2007).Google Scholar
  11. 11.
    M. F. Pereira and S. Tomić, Intersubband gain without global inversion through dilute nitride band engineering, Appl. Phys. Lett. 98, 061101-1–061101-3 (2011).Google Scholar
  12. 12.
    M.F. Pereira Jr., Microscopic approach for intersubband-based thermophotovoltaic structures in the THz and Mid Infrared, JOSA B28, 2014–2017 (2011).Google Scholar
  13. 13.
    H. Grempel, A. Diessel, W. Ebeling, J. Gutowski, K. Schuell, B. Jobst, M.F. Pereira Jr., and K. Henneberger, High-density effects, stimulated emission and electrooptical properties of ZnCdSe/ZnSe single quantum wells and laser diodes, Phys. Stat. Sol. B194, 199–217 (1996).Google Scholar
  14. 14.
    M.F. Pereira Jr., R. Binder and S.W. Koch, Theory of nonlinear absorption in coupled band quantum wells with many-body effects, Appl. Phys. Lett. 64, 279–281 (1994).Google Scholar
  15. 15.
    M.F. Pereira Jr. and K. Henneberger, Gain mechanisms and lasing in II–VI compounds, Phys. Stat. Sol. B202, 751–762 (1997).Google Scholar
  16. 16.
    W.W. Chow, M.F. Pereira Jr., and S.W. Koch, Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium, Appl. Phys. Lett. 61, 758–760 (1992).Google Scholar
  17. 17.
    T. Schmielau and M.F. Pereira Jr., Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers, Appl. Phys. Lett. 95, 231111-1–231111-3 (2009).Google Scholar
  18. 18.
    T. Schmielau and M.F. Pereira, Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers, Physica Status Solidi B 246, 329–331 (2009).Google Scholar
  19. 19.
    T. Schmielau and M.F. Pereira, Microelectronics Journal 40, 869–871 (2009).Google Scholar
  20. 20.
    L. Bányai and S.W. Koch, A Simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors, Z. Physik B63, 283–291 (1986).Google Scholar
  21. 21.
    C.I. Oriaku and M.F. Pereira, Analytical solutions for semiconductor luminescence including Coulomb correlations with applications to dilute bismides, J. Opt. Soc. Am B 34, 321–328 (2017).Google Scholar
  22. 22.
    M.F. Pereira Jr., I.Galbraith, S.W.Koch, and G.Duggan, Exciton binding energies in semiconductor superlattices: an anisotropic effective-medium approach, Phys. Rev. B42, 7084–7089 (1990).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • C. I. Oriaku
    • 1
    • 2
  • T. J. Spencer
    • 1
    • 2
  • M. F. Pereira
    • 1
    • 2
  1. 1.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK
  2. 2.Department of PhysicsMichael Okpara University of AgricultureUmuahiaNigeria

Personalised recommendations