Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

TRPC channels play important roles in neuronal death/survival in ischemic stroke, vasospasm in hemorrhagic stroke, thrombin-induced astrocyte pathological changes, and also in the initiation of stroke by affecting blood pressure and atherogenesis. TRPCs’ unique channel characters and downstream pathways make them possible new targets for stroke therapy. TRPC proteins have different functions in different cell types. Considering TRPCs’ extensive distribution in various tissues and cell types, drugs targeting them could induce more complicated effects. More specific agonists/antagonists and antibodies are required for future study of TRPCs as potential targets for stroke therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook DJ, Tymianski M (2011) Translating promising preclinical neuroprotective therapies to human stroke trials. Expert Rev Cardiovasc Ther 9:433–449

    Article  PubMed  Google Scholar 

  2. Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A A96:5791–5796

    Article  Google Scholar 

  3. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  4. Wu LJ, Sweet TB, Clapham DE (2010) International Union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623

    Article  CAS  PubMed  Google Scholar 

  6. Tasker RC, Duncan ED (2015) Focal cerebral ischemia and neurovascular protection: a bench-to-bedside update. Curr Opin Pediatr 27:694–699

    Article  CAS  PubMed  Google Scholar 

  7. Fisher M (2004) The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis 17(Suppl 1):1–6

    PubMed  Google Scholar 

  8. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    Article  CAS  PubMed  Google Scholar 

  9. Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104

    CAS  PubMed  Google Scholar 

  10. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoyte L, Barber PA, Buchan AM, Hill MD (2004) The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med 4:131–136

    Article  CAS  PubMed  Google Scholar 

  12. Prass K, Dirnagl U (1998) Glutamate antagonists in therapy of stroke. Restor Neurol Neurosci 13:3–10

    CAS  PubMed  Google Scholar 

  13. Aarts M et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298:846–850

    Article  CAS  PubMed  Google Scholar 

  14. Sun HS et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    Article  CAS  PubMed  Google Scholar 

  15. Aarts M et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  16. Li H et al (2012) TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. J Neurochem 123:1010–1018

    Article  CAS  PubMed  Google Scholar 

  17. Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10:559–567

    Article  CAS  PubMed  Google Scholar 

  18. Du W et al (2010) Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 120:3480–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin Y et al (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 50:504–513

    Article  CAS  PubMed  Google Scholar 

  20. Lin Y et al (2013) Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. J Cereb Blood Flow Metab 33:253–262

    Article  CAS  PubMed  Google Scholar 

  21. Yao C, Zhang J, Chen F, Lin Y (2013) Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways. Mol Med Rep 8:543–550

    PubMed  Google Scholar 

  22. Yao C, Zhang J, Liu G, Chen F, Lin Y (2014) Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep 9:69–76

    CAS  PubMed  Google Scholar 

  23. Zhang J, Mao X, Zhou T, Cheng X, Lin Y (2014) IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience 274:419–428

    Article  CAS  PubMed  Google Scholar 

  24. Gao YQ, Gao H, Zhou ZY, Lu SD, Sun FY (2004) Expression of transient receptor potential channel 4 in striatum and hippocampus of rats is increased after focal cerebral ischemia. Sheng Li Xue Bao 56:153–157

    CAS  PubMed  Google Scholar 

  25. Zhang Y et al (2015) MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci Rep 5:9401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dai G et al (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A A101:14871–14876

    Article  Google Scholar 

  27. Thilo F et al (2012) Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells. Hypertension 59:1232–1240

    Article  CAS  PubMed  Google Scholar 

  28. Smedlund KB, Birnbaumer L, Vazquez G (2015) Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc Natl Acad Sci U S A A112:E2201–E2206

    Article  Google Scholar 

  29. Smedlund K, Vazquez G (2008) Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 28:2049–2055

    Article  CAS  PubMed  Google Scholar 

  30. Kim I et al (2001) Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem 276:7614–7620

    Article  CAS  PubMed  Google Scholar 

  31. Smedlund K, Tano JY, Vazquez G (2010) The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule-1 expression in coronary endothelial cells through nuclear factor kappaB signaling. Circ Res 106:1479–1488

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Z et al (2012) Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels. PLoS One 7:e32628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu DY et al (2007) Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. Am J Hypertens 20:1111–1118

    Article  CAS  PubMed  Google Scholar 

  34. Chaudhuri P, Colles SM, Damron DS, Graham LM (2003) Lysophosphatidylcholine inhibits endothelial cell migration by increasing intracellular calcium and activating calpain. Arterioscler Thromb Vasc Biol 23:218–223

    Article  CAS  PubMed  Google Scholar 

  35. Chaudhuri P et al (2016) Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci U S A A113:2110–2115

    Article  Google Scholar 

  36. Chaudhuri P et al (2008) Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol Biol Cell 19:3203–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tano JY et al (2011) Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages. Biochem Biophys Res Commun 410:643–647

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Perez A, Gaist D, Wallander MA, McFeat G, Garcia-Rodriguez LA (2013) Mortality after hemorrhagic stroke: data from general practice (The Health Improvement Network). Neurology 81:559–565

    Article  PubMed  Google Scholar 

  39. Thiex R et al (2007) Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J Neurosurg 106:314–320

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Tsirka SE (2005) Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care 3:77–85

    Article  CAS  PubMed  Google Scholar 

  41. Krenzlin H, Lorenz V, Danckwardt S, Kempski O, Alessandri B (2016) The importance of thrombin in cerebral injury and disease. Int J Mol Sci 17

    Google Scholar 

  42. Nicole O et al (2005) Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J Neurosci 25:4319–4329

    Article  CAS  PubMed  Google Scholar 

  43. Nishino A et al (1993) Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma 10:167–179

    Article  CAS  PubMed  Google Scholar 

  44. Cavanaugh KP, Gurwitz D, Cunningham DD, Bradshaw RA (1990) Reciprocal modulation of astrocyte stellation by thrombin and protease nexin-1. J Neurochem 54:1735–1743

    Article  CAS  PubMed  Google Scholar 

  45. Ubl JJ, Reiser G (1997) Characteristics of thrombin-induced calcium signals in rat astrocytes. Glia 21:361–369

    Article  CAS  PubMed  Google Scholar 

  46. Shirakawa H et al (2010) Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci 30:13116–13129

    Article  CAS  PubMed  Google Scholar 

  47. Munakata M et al (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44:1981–1987

    Article  CAS  PubMed  Google Scholar 

  48. Klungel OH et al (2000) Control of blood pressure and risk of stroke among pharmacologically treated hypertensive patients. Stroke 31:420–424

    Article  CAS  PubMed  Google Scholar 

  49. Chen J, Crossland RF, Noorani MM, Marrelli SP (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297:H417–H424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Senadheera S et al (2012) Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovasc Res 95:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu CL, Huang Y, Ngai CY, Leung YK, Yao XQ (2006) TRPC3 is involved in flow- and bradykinin-induced vasodilation in rat small mesenteric arteries. Acta Pharmacol Sin 27:981–990

    Article  CAS  PubMed  Google Scholar 

  52. Adebiyi A et al (2010) Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res 106:1603–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu DY et al (2007) Increased store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. J Hypertens 25:799–808

    Article  CAS  PubMed  Google Scholar 

  54. Liu D et al (2005) Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens 18:1503–1507

    Article  CAS  PubMed  Google Scholar 

  55. Liu D et al (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53:70–76

    Article  CAS  PubMed  Google Scholar 

  56. Adebiyi A et al (2012) An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension. Hypertension 60:1213–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dietrich A et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen X et al (2010) Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J Cell Mol Med 14:2483–2494

    Article  CAS  PubMed  Google Scholar 

  59. Pulina MV et al (2010) Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am J Physiol Heart Circ Physiol 298:H263–H274

    Article  CAS  PubMed  Google Scholar 

  60. Linde CI et al (2012) Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats. Am J Physiol Heart Circ Physiol 302:H611–H620

    Article  CAS  PubMed  Google Scholar 

  61. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369

    Article  PubMed  Google Scholar 

  62. Smith M, Citerio G (2015) What's new in subarachnoid hemorrhage. Intensive Care Med 41:123–126

    Article  CAS  PubMed  Google Scholar 

  63. Dorsch N (2011) A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir Suppl 110:5–6

    PubMed  Google Scholar 

  64. Pluta RM et al (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khurana VG et al (2004) Endothelial nitric oxide synthase gene polymorphisms predict susceptibility to aneurysmal subarachnoid hemorrhage and cerebral vasospasm. J Cereb Blood Flow Metab 24:291–297

    Article  CAS  PubMed  Google Scholar 

  66. Zimmermann M, Seifert V (1998) Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery 43:863–875

    Article  CAS  PubMed  Google Scholar 

  67. Johansson SE, Andersen XE, Hansen RH, Povlsen GK, Edvinsson L (2015) Cerebrovascular endothelin-1 hyper-reactivity is associated with transient receptor potential canonical channels 1 and 6 activation and delayed cerebral hypoperfusion after forebrain ischaemia in rats. Acta Physiol (Oxf) 214:376–389

    Article  CAS  Google Scholar 

  68. Koide M, Bonev AD, Nelson MT, Wellman GC (2012) Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A A109:E1387–E1395

    Article  Google Scholar 

  69. Keyrouz SG, Diringer MN (2007) Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care 11:220

    Article  PubMed  PubMed Central  Google Scholar 

  70. Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10:44–58

    Article  CAS  PubMed  Google Scholar 

  71. Macdonald RL et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625

    Article  CAS  PubMed  Google Scholar 

  72. Kawanabe Y, Hashimoto N, Masaki T (2002) Characterization of Ca2+ channels involved in endothelin-1-induced contraction of rabbit basilar artery. J Cardiovasc Pharmacol 40:438–447

    Article  CAS  PubMed  Google Scholar 

  73. Kawanabe Y, Masaki T, Hashimoto N (2006) Involvement of phospholipase C in endothelin 1-induced stimulation of Ca++ channels and basilar artery contraction in rabbits. J Neurosurg 105:288–293

    Article  CAS  PubMed  Google Scholar 

  74. Macdonald RL et al (1998) Prevention of vasospasm after subarachnoid hemorrhage in dogs by continuous intravenous infusion of PD156707. Neurol Med Chir (Tokyo) 38(Suppl):138–145

    Article  Google Scholar 

  75. Xie A et al (2007) Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 27:1692–1701

    Article  CAS  PubMed  Google Scholar 

  76. Song JN et al (2013) Potential contribution of SOCC to cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Brain Res 1517:93–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbo Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Huang, J. (2017). TRPC Channels and Stroke. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_6

Download citation

Publish with us

Policies and ethics