Skip to main content

Hypoxia in Head and Neck Cancer

  • Chapter
  • First Online:
Squamous cell Carcinoma
  • 616 Accesses

Abstract

Head and neck cancer is the sixth most common malignancy worldwide and a major cause of death from cancer, with a median 5-year survival of around 50% (Suh et al. 2014). Over 90% are squamous cell carcinomas arising from the epithelial cells that line the mucosal surfaces of the head and neck. Tumour hypoxia is an important negative prognostic factor for head and neck squamous cell carcinomas (HNSCC), associated with resistance to radiotherapy and decreased overall survival (Bittner and Grosu 2013). Therefore, tumour hypoxia is an important phenomenon in the management of HNSCC and has been the focus of studies to improve treatment response for many years. This chapter aims to discuss some of the key mechanisms affected by tumour hypoxia and review strategies under investigation towards better detection and modulation of tumour hypoxia in order to improve treatment response and survival of head and neck cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam MF, Gabalski EC, Bloch DA et al (1999) Tissue oxygen distribution in head and neck cancer patients. Head Neck 21:146–153

    Article  CAS  PubMed  Google Scholar 

  • Aebersold DM, Burri P, Beer KT et al (2001) Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911–2916

    CAS  PubMed  Google Scholar 

  • Ahmed M, Behera R, Chakraborty G et al (2011) Osteopontin: a potentially important therapeutic target in cancer. Expert Opin Ther Targets 15:1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan K (2015) HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer J Int du Cancer

    Google Scholar 

  • Bayer C, Shi K, Astner ST, Maftei CA, Vaupel P (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80:965–968

    Article  PubMed  Google Scholar 

  • Beasley NJ, Leek R, Alam M et al (2002) Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62:2493–2497

    CAS  PubMed  Google Scholar 

  • Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, Dunst J (1998) Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 42:35–41

    Article  CAS  PubMed  Google Scholar 

  • Bennett M, Feldmeier J, Smee R, Milross C (2008) Hyperbaric oxygenation for tumour sensitisation to radiotherapy: a systematic review of randomised controlled trials. Cancer Treat Rev 34:577–591

    Article  CAS  PubMed  Google Scholar 

  • Bentzen J, Toustrup K, Eriksen JG, Primdahl H, Andersen LJ, Overgaard J (2015) Locally advanced head and neck cancer treated with accelerated radiotherapy, the hypoxic modifier nimorazole and weekly cisplatin. Results from the DAHANCA 18 phase II study. Acta Oncol 1–7

    Google Scholar 

  • Bi M, Naczki C, Koritzinsky M et al (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24:3470–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner MI, Grosu AL (2013) Hypoxia in head and neck tumors: characteristics and development during therapy. Front Oncol 3:223

    PubMed  PubMed Central  Google Scholar 

  • Bohlius J, Schmidlin K, Brillant C et al (2009) Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: a meta-analysis of randomised trials. Lancet 373:1532–1542

    Article  CAS  PubMed  Google Scholar 

  • Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285–289

    Article  CAS  PubMed  Google Scholar 

  • Brizel DM, Dodge RK, Clough RW, Dewhirst MW (1999) Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol J Eur Soc Ther Radiol Oncol 53:113–117

    Article  CAS  Google Scholar 

  • Brizel DM, Schroeder T, Scher RL et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–353

    Article  CAS  PubMed  Google Scholar 

  • Brown JM (1993) SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 67:1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruning U, Cerone L, Neufeld Z et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31:4087–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruning U, Fitzpatrick SF, Frank T, Birtwistle M, Taylor CT, Cheong A (2012) NFkappaB and HIF display synergistic behaviour during hypoxic inflammation. Cell Mol Life Sci CMLS 69:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Buffa FM, Harris AL, West CM, Miller CJ (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussink J, Kaanders JH, Rijken PF, Raleigh JA, Van der Kogel AJ (2000) Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiat Res 153:398–404

    Article  CAS  PubMed  Google Scholar 

  • Camps C, Saini HK, Mole DR et al (2014) Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer 13:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catenacci DV (2014) Next-generation clinical trials: novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol

    Google Scholar 

  • Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Jurisica I, Do T, Hedley DW (2011) Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 71:3110–3120

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Lee CY, Park JH et al (2013) Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. J Veterinary Sci 14:69–76

    Article  Google Scholar 

  • Chao KS, Bosch WR, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Chi JT, Wang Z, Nuyten DS et al (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3:e47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chien CY, Su CY, Chuang HC et al (2009) Comprehensive study on the prognostic role of osteopontin expression in oral squamous cell carcinoma. Oral Oncol 45:798–802

    Article  CAS  PubMed  Google Scholar 

  • Chio CC, Lin JW, Cheng HA et al (2013) MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 87:459–468

    Article  CAS  PubMed  Google Scholar 

  • Chopra S, Foltz WD, Milosevic MF et al (2009) Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 85:805–813

    Article  CAS  PubMed  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  • Crosby ME, Kulshreshtha R, Ivan M, Glazer PM (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69:1221–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem JBIC Publ Soc Biol Inorg Chem 7:249–259

    Article  CAS  Google Scholar 

  • Denko NC, Fontana LA, Hudson KM et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907–5914

    Article  CAS  PubMed  Google Scholar 

  • Dennis MF, Stratford MR, Wardman P, Watts ME (1985) Cellular uptake of misonidazole and analogues with acidic or basic functions. Int J Radiat Biol Related Stud Phys Chem Med 47:629–643

    Article  CAS  Google Scholar 

  • Doedens AL, Stockmann C, Rubinstein MP et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunst J, Stadler P, Becker A et al (2003) Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al]179:521–526

    Google Scholar 

  • Eckert AW, Lautner MH, Schutze A, Taubert H, Schubert J, Bilkenroth U (2011) Coexpression of hypoxia-inducible factor-1alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 58:1136–1147

    Article  PubMed  Google Scholar 

  • Eriksen JG, Overgaard J, Danish H (2007) Neck cancer study G. Lack of prognostic and predictive value of CA IX in radiotherapy of squamous cell carcinoma of the head and neck with known modifiable hypoxia: an evaluation of the DAHANCA 5 study. Radiother Oncol J Eur Soc Ther Radiol Oncol 83:383–388

    Article  CAS  Google Scholar 

  • Eschmann SM, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med Official Publ Soc Nucl Med 46:253–260

    Google Scholar 

  • Eustace A, Mani N, Span PN et al (2013a) A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res: Official J Am Assoc Cancer Res 19:4879–4888

    Article  CAS  Google Scholar 

  • Eustace A, Mani N, Span PN et al (2013b) A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res Official J Am Assoc Cancer Res 19:4879–4888

    Article  CAS  Google Scholar 

  • Evans SM, Hahn S, Pook DR et al (2000) Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60:2018–2024

    CAS  PubMed  Google Scholar 

  • Evans SM, Du KL, Chalian AA et al (2007) Patterns and levels of hypoxia in head and neck squamous cell carcinomas and their relationship to patient outcome. Int J Radiat Oncol Biol Phys 69:1024–1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasanaro P, D’Alessandra Y, Di Stefano V et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  • Fortin A, Wang CS, Vigneault E (2008) Effect of pretreatment anemia on treatment outcome of concurrent radiochemotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 72:255–260

    Article  PubMed  Google Scholar 

  • Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  CAS  PubMed  Google Scholar 

  • Fury MG, Lee NY, Sherman E et al (2012) A phase 2 study of bevacizumab with cisplatin plus intensity-modulated radiation therapy for stage III/IVB head and neck squamous cell cancer. Cancer 118:5008–5014

    Article  CAS  PubMed  Google Scholar 

  • Galvin JM, De Neve W (2007) Intensity modulating and other radiation therapy devices for dose painting. J Clin Oncol Official J Am Soc Clin Oncol 25:924–930

    Article  Google Scholar 

  • Gatenby RA, Kessler HB, Rosenblum JS et al (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838

    Article  CAS  PubMed  Google Scholar 

  • Gee HE, Camps C, Buffa FM et al (2010) hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116:2148–2158

    PubMed  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  CAS  PubMed  Google Scholar 

  • Grassi I, Nanni C, Cicoria G et al (2014) Usefulness of 64Cu-ATSM in head and neck cancer: a preliminary prospective study. Clin Nucl Med 39:e59–e63

    Article  PubMed  Google Scholar 

  • Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  CAS  PubMed  Google Scholar 

  • Guimbellot JS, Erickson SW, Mehta T et al (2009) Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics 2:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada H, Itasaka S, Kizaka-Kondoh S et al (2009) The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J Biol Chem 284:5332–5342

    Article  CAS  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  • Hassan Metwally MA, Ali R, Kuddu M et al (2015) IAEA-HypoX. A randomized multicenter study of the hypoxic radiosensitizer nimorazole concomitant with accelerated radiotherapy in head and neck squamous cell carcinoma. Radiother Oncol J Eur Soc Ther Radiol Oncol

    Google Scholar 

  • Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendrickson K, Phillips M, Smith W, Peterson L, Krohn K, Rajendran J (2011) Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. Radiother Oncol J Eur Soc Ther Radiol Oncol 101:369–375

    Article  Google Scholar 

  • Hoang T, Huang S, Armstrong E, Eickhoff JC, Harari PM (2012) Enhancement of radiation response with bevacizumab. J Exp Clin Cancer Res CR 31:37

    Article  CAS  PubMed  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Nat Cancer Inst 93:266–276

    Article  CAS  PubMed  Google Scholar 

  • Hoff CM, Hansen HS, Overgaard M et al (2011) The importance of haemoglobin level and effect of transfusion in HNSCC patients treated with radiotherapy–results from the randomized DAHANCA 5 study. Radiother Oncol J Eur Soc Ther Radiol Oncol 98:28–33

    Article  Google Scholar 

  • Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9:674–687

    Article  CAS  PubMed  Google Scholar 

  • Howard-Flanders P, Moore D (1958) The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. I. A search for an effect of oxygen 0.02 second after pulsed irradiation. Radiat Res 9:422–437

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Lv Q, Ye W et al (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1:e116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Ding L, Bennewith KL et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hueting R, Kersemans V, Cornelissen B et al (2014) A comparison of the behavior of (64)Cu-acetate and (64)Cu-ATSM in vitro and in vivo. J Nucl Med Official Publ Soc Nucl Med 55:128–134

    CAS  Google Scholar 

  • Jansen JF, Schoder H, Lee NY et al (2010) Noninvasive assessment of tumor microenvironment using dynamic contrast-enhanced magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography imaging in neck nodal metastases. Int J Radiat Oncol Biol Phys 77:1403–1410

    Article  PubMed  Google Scholar 

  • Janssens GO, Rademakers SE, Terhaard CH et al (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol Official J Am Soc Clin Oncol 30:1777–1783

    Article  CAS  Google Scholar 

  • Jonathan RA, Wijffels KI, Peeters W et al (2006) The prognostic value of endogenous hypoxia-related markers for head and neck squamous cell carcinomas treated with ARCON. Radiother Oncol J Eur Soc Ther Radiol Oncol 79:288–297

    Article  CAS  Google Scholar 

  • Jung JE, Lee HG, Cho IH et al (2005) STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J Official Publ Fed Am Soc Exp Biol 19:1296–1298

    CAS  Google Scholar 

  • Kaanders JH, Pop LA, Marres HA et al (2002a) ARCON: experience in 215 patients with advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 52:769–778

    Article  PubMed  Google Scholar 

  • Kaanders JH, Wijffels KI, Marres HA et al (2002b) Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res 62:7066–7074

    CAS  PubMed  Google Scholar 

  • Kikuchi M, Yamane T, Shinohara S et al (2011) 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med 25:625–633

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284:33161–33168

    Article  PubMed  CAS  Google Scholar 

  • Koong AC, Denko NC, Hudson KM et al (2000) Candidate genes for the hypoxic tumor phenotype. Cancer Res 60:883–887

    CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Sivridis E et al (2001a) Squamous cell head and neck cancer: evidence of angiogenic regeneration during radiotherapy. Anticancer Res 21:4301–4309

    CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Sivridis E et al (2001b) Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clin Cancer Res Official J Am Assoc Cancer Res 7:3399–3403

    CAS  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Sivridis E et al (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53:1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Krishnamachary B, Zagzag D, Nagasawa H et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66:2725–2731

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyzas PA, Cunha IW, Ioannidis JP (2005a) Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res Official J Am Assoc Cancer Res 11:1434–1440

    Article  CAS  Google Scholar 

  • Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ (2005b) Hypoxia-induced tumor angiogenic pathway in head and neck cancer: an in vivo study. Cancer Lett 225:297–304

    Article  CAS  PubMed  Google Scholar 

  • Lambin P, Ramaekers BL, van Mastrigt GA et al (2009) Erythropoietin as an adjuvant treatment with (chemo) radiation therapy for head and neck cancer. The Cochrane database Syst Rev CD006158

    Google Scholar 

  • Lee DJ, Cosmatos D, Marcial VA et al (1995) Results of an RTOG phase III trial (RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys 32:567–576

    Article  CAS  PubMed  Google Scholar 

  • Lee WR, Berkey B, Marcial V et al (1998a) Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: a secondary analysis of RTOG 85-27. Int J Radiat Oncol Biol Phys 42:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Trotti A, Spencer S et al (1998b) Concurrent tirapazamine and radiotherapy for advanced head and neck carcinomas: a phase II study. Int J Radiat Oncol Biol Phys 42:811–815

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Nehmeh S, Schoder H et al (2009) Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 75:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ (2001) Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med Official Publ Soc Nucl Med 42:655–661

    CAS  Google Scholar 

  • Lim AM, Rischin D, Fisher R et al (2012) Prognostic significance of plasma osteopontin in patients with locoregionally advanced head and neck squamous cell carcinoma treated on TROG 02.02 phase III trial. Clin Cancer Res Official J Am Assoc Cancer Res 18:301–307

    Article  CAS  Google Scholar 

  • Liu J, Hajibeigi A, Ren G et al (2009) Retention of the radiotracers 64Cu-ATSM and 64Cu-PTSM in human and murine tumors is influenced by MDR1 protein expression. J Nucl Med Official Publ Soc Nucl Med 50:1332–1339

    CAS  Google Scholar 

  • Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167:127–145

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

    Article  CAS  PubMed  Google Scholar 

  • Magagnin MG, van den Beucken T, Sergeant K et al (2008) The mTOR target 4E-BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency. Proteomics 8:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Marxsen JH, Stengel P, Doege K et al (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381:761–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minagawa Y, Shizukuishi K, Koike I et al (2011) Assessment of tumor hypoxia by 62Cu-ATSM PET/CT as a predictor of response in head and neck cancer: a pilot study. Ann Nucl Med 25:339–345

    Article  PubMed  Google Scholar 

  • Mineta H, Miura K, Takebayashi S et al (2002) Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Res 22:3489–3494

    PubMed  Google Scholar 

  • Mortensen LS, Johansen J, Kallehauge J et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol J Eur Soc Ther Radiol Oncol 105:14–20

    Article  Google Scholar 

  • Nagelkerke A, Bussink J, Mujcic H et al (2013) Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res BCR 15:R2

    Article  CAS  PubMed  Google Scholar 

  • Newbold K, Castellano I, Charles-Edwards E et al (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:29–37

    Article  PubMed  Google Scholar 

  • Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 57:39–43

    Article  CAS  Google Scholar 

  • Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol J Eur Soc Ther Radiol Oncol 41:31–39

    Article  CAS  Google Scholar 

  • Nordsmark M, Loncaster J, Aquino-Parsons C et al (2003) Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol J Eur Soc Ther Radiol Oncol 67:35–44

    Article  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol J Eur Soc Ther Radiol Oncol 77:18–24

    Article  Google Scholar 

  • Nordsmark M, Loncaster J, Aquino-Parsons C et al (2006) The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother Oncol J Eur Soc Ther Radiol Oncol 80:123–131

    Article  CAS  Google Scholar 

  • Nordsmark M, Eriksen JG, Gebski V, Alsner J, Horsman MR, Overgaard J (2007) Differential risk assessments from five hypoxia specific assays: the basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol J Eur Soc Ther Radiol Oncol 83:389–397

    Article  Google Scholar 

  • Nozue M, Lee I, Yuan F et al (1997) Interlaboratory variation in oxygen tension measurement by Eppendorf “Histograph” and comparison with hypoxic marker. J Surgical Oncol 66:30–38

    Article  CAS  Google Scholar 

  • O’Donoghue JA, Zanzonico P, Pugachev A et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Oliver RJ, Woodwards RT, Sloan P, Thakker NS, Stratford IJ, Airley RE (2004) Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC translational research fund studies. Eur J Cancer 40:503–507

    Article  CAS  PubMed  Google Scholar 

  • Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509–518

    CAS  PubMed  Google Scholar 

  • Overgaard J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck–a systematic review and meta-analysis. Radiother Oncol J Eur Soc Ther Radiol Oncol 100:22–32

    Article  Google Scholar 

  • Overgaard J, Hansen HS, Overgaard M et al (1998) A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol J Eur Soc Ther Radiol Oncol 46:135–146

    Article  CAS  Google Scholar 

  • Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR (2005) Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 6:757–764

    Article  CAS  PubMed  Google Scholar 

  • Pereira ER, Frudd K, Awad W, Hendershot LM (2014) Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF). J Biol Chem 289:3352–3364

    Article  CAS  PubMed  Google Scholar 

  • Prekeges JL, Rasey JS, Grunbaum Z, Krohn KH (1991) Reduction of fluoromisonidazole, a new imaging agent for hypoxia. Biochem Pharmacol 42:2387–2395

    Article  CAS  PubMed  Google Scholar 

  • Puissegur MP, Mazure NM, Bertero T et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18:465–478

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz MH (2013) Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J Med Chem 56:9369–9402

    Article  CAS  PubMed  Google Scholar 

  • Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J (2008) Molecular aspects of tumour hypoxia. Mol Oncol 2:41–53

    Article  PubMed  Google Scholar 

  • Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders JH (2011) Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res Official J Am Assoc Cancer Res 12:5435–5441

    Article  CAS  Google Scholar 

  • Raleigh JA, Calkins-Adams DP, Rinker LH et al (1998) Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58:3765–3768

    CAS  PubMed  Google Scholar 

  • Raleigh JA, Chou SC, Arteel GE, Horsman MR (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580–589

    Article  CAS  PubMed  Google Scholar 

  • Rischin D, Peters L, Hicks R et al (2001) Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol Official J Am Soc Clin Oncol 19:535–542

    Article  CAS  Google Scholar 

  • Rischin D, Peters L, Fisher R et al (2005) Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol Official J Am Soc Clin Oncol 23:79–87

    Article  CAS  Google Scholar 

  • Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman radiation oncology group study 98.02. J Clin Oncol Official J Am Soc Clin Oncol 24:2098–2104

    Article  Google Scholar 

  • Rischin D, Narayan K, Oza AM et al (2010) Phase 1 study of tirapazamine in combination with radiation and weekly cisplatin in patients with locally advanced cervical cancer. Int J Gynecol Cancer Official J Int Gynecol Cancer Soc 20:827–833

    Article  Google Scholar 

  • Roels S, Slagmolen P, Nuyts J et al (2008) Biological image-guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol 47:1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Rofstad EK, Galappathi K, Mathiesen B, Ruud EB (2007) Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res Official J Am Assoc Cancer Res 13:1971–1978

    Article  CAS  Google Scholar 

  • Rouschop KM, Dubois L, Schaaf MB et al (2011) Deregulation of cap-dependent mRNA translation increases tumour radiosensitivity through reduction of the hypoxic fraction. Radiother Oncol J Eur Soc Ther Radiol Oncol 99:385–391

    Article  CAS  Google Scholar 

  • Rudat V, Vanselow B, Wollensack P et al (2000) Repeatability and prognostic impact of the pretreatment pO(2) histography in patients with advanced head and neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 57:31–37

    Article  CAS  Google Scholar 

  • Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Tsujikawa T, Oh M et al (2014) Assessing tumor hypoxia in head and neck cancer by PET with (6)(2)Cu-diacetyl-bis(N(4)-methylthiosemicarbazone). Clin Nucl Med 39:1027–1032

    Article  PubMed  Google Scholar 

  • Sattler UG, Meyer SS, Quennet V et al (2010) Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol J Eur Soc Ther Radiol Oncol 94:102–109

    Article  CAS  Google Scholar 

  • Schwartz DL, Powis G, Thitai-Kumar A et al (2009) The selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects. Mol Cancer Ther 8:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segard T, Robins PD, Yusoff IF et al (2013) Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspected or proven pancreatic cancer. Clin Nucl Med 38:1–6

    Article  PubMed  Google Scholar 

  • Seigneuric R, Starmans MH, Fung G et al (2007) Impact of supervised gene signatures of early hypoxia on patient survival. Radiother Oncol J Eur Soc Ther Radiol Oncol 83:374–382

    Article  CAS  Google Scholar 

  • Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59:47–53

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Article  CAS  PubMed  Google Scholar 

  • Sermeus A, Michiels C (2011) Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2:e164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skovsgaard T (1977) Transport and binding of daunorubicin, adriamycin, and rubidazone in Ehrlich ascites tumour cells. Biochem Pharmacol 26:215–222

    Article  CAS  PubMed  Google Scholar 

  • Sobhanifar S, Aquino-Parsons C, Stanbridge EJ, Olive P (2005) Reduced expression of hypoxia-inducible factor-1alpha in perinecrotic regions of solid tumors. Cancer Res 65:7259–7266

    Article  CAS  PubMed  Google Scholar 

  • Sorensen BS, Toustrup K, Horsman MR, Overgaard J, Alsner J (2010) Identifying pH independent hypoxia induced genes in human squamous cell carcinomas in vitro. Acta Oncol 49:895–905

    Article  PubMed  CAS  Google Scholar 

  • Souvatzoglou M, Grosu AL, Roper B et al (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Span PN, Bussink J (2015) Biology of hypoxia. Semin Nucl Med 45:101–109

    Article  PubMed  Google Scholar 

  • Stadler P, Becker A, Feldmann HJ et al (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749–754

    Article  CAS  PubMed  Google Scholar 

  • Starmans MH, Chu KC, Haider S et al (2012) The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 102:436–443

    Article  CAS  Google Scholar 

  • Suh Y, Amelio I, Guerrero Urbano T, Tavassoli M (2014) Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis 5:e1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock IF (1998) Conventional cancer therapy: promise broken or promise delayed? Lancet 351(Suppl 2):SII9–16

    Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toustrup K, Sorensen BS, Nordsmark M et al (2011) Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res 71:5923–5931

    Article  CAS  PubMed  Google Scholar 

  • Toustrup K, Sorensen BS, Lassen P, Wiuf C, Alsner J, Overgaard J (2012) Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol J Eur Soc Ther Radiol Oncol 102:122–129

    Article  CAS  Google Scholar 

  • Turkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL (2010) The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol 16:186–192

    PubMed  Google Scholar 

  • Vadysirisack DD, Ellisen LW (2012) mTOR activity under hypoxia. Methods Mol Biol 821:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Bogaert W, van der Schueren E, Horiot JC et al (1995) The EORTC randomized trial on three fractions per day and misonidazole (trial no. 22811) in advanced head and neck cancer: long-term results and side effects. Radiother Oncol J Eur Soc Ther Radiol Oncol 35:91–99

    Article  Google Scholar 

  • Varghese AJ, Gulyas S, Mohindra JK (1976) Hypoxia-dependent reduction of 1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo. Cancer Res 36:3761–3765

    CAS  PubMed  Google Scholar 

  • Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Article  PubMed  Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Schaefer C, Okunieff P (1994) Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total Pi. NMR Biomed 7:128–136

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Hockel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signaling 9:1221–1235

    Article  CAS  Google Scholar 

  • Wachters JE, Schrijvers ML, Slagter-Menkema L et al (2013) Prognostic significance of HIF-1a, CA-IX, and OPN in T1-T2 laryngeal carcinoma treated with radiotherapy. The Laryngoscope 123:2154–2160

    Article  PubMed  Google Scholar 

  • Wang Y, Alam GN, Ning Y et al (2012) The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res 72:5396–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhao J, Shi M et al (2014) Elevated expression of miR-210 predicts poor survival of cancer patients: a systematic review and meta-analysis. PLoS ONE 9:e89223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter SC, Buffa FM, Silva P et al (2007) Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 67:3441–3449

    Article  CAS  PubMed  Google Scholar 

  • Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8:851–864

    Article  CAS  PubMed  Google Scholar 

  • Wouters BG, Weppler SA, Koritzinsky M et al (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38:240–257

    Article  CAS  PubMed  Google Scholar 

  • Wozniak AJ, Glisson BS, Hande KR, Ross WE (1984) Inhibition of etoposide-induced DNA damage and cytotoxicity in L1210 cells by dehydrogenase inhibitors and other agents. Cancer Res 44:626–632

    CAS  PubMed  Google Scholar 

  • Wykoff CC, Beasley NJ, Watson PH et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    CAS  PubMed  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10:295–305

    Article  CAS  PubMed  Google Scholar 

  • Ying Q, Liang L, Guo W et al (2011) Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma. Hepatology 54:2064–2075

    Article  CAS  PubMed  Google Scholar 

  • Yoshii Y, Yoneda M, Ikawa M et al (2012) Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less rho0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol 39:177–185

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Schroeder T, Bowsher JE, Hedlund LW, Wong T, Dewhirst MW (2006) Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med Official Publ Soc Nucl Med 47:989–998

    CAS  Google Scholar 

  • Zhang Z, Sun H, Dai H et al (2009) MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8:2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Zips D, Zophel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 105:21–28

    Article  Google Scholar 

  • Zuo J, Wen M, Lei M, Peng X, Yang X, Liu Z (2015) MiR-210 links hypoxia with cell proliferation regulation in human Laryngocarcinoma cancer. J Cell Biochem 116:1039–1049

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yae-eun Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tavassoli, M., Suh, Ye. (2017). Hypoxia in Head and Neck Cancer. In: Warnakulasuriya, S., Khan, Z. (eds) Squamous cell Carcinoma. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1084-6_3

Download citation

Publish with us

Policies and ethics