Skip to main content

Case Studies: Function Predictions of Structural Genomics Results

  • Chapter
  • First Online:
From Protein Structure to Function with Bioinformatics

Abstract

The various Structural Genomics initiatives around the globe succeeded in solving several thousand protein structures, many of which were novel folds or structures of biological interest. Nevertheless, because of the high-throughput strategies employed, a significant proportion of the proteins were of unknown function, and remain so to this day. A number of computational methods have been developed to help ascertain protein function from three dimensional structure, the approaches ranging from large scale fold comparison to highly specific residue template matching. Each has its own advantages and disadvantages. Here we look at various analyses conducted to assess function prediction from structure, with specific examples of some of the success stories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MA, Suits MD, Zheng J, Jia Z (2007) Piecing together the structure-function puzzle: experiences in structure-based functional annotation of hypothetical proteins. Proteomics 7(16):2920–2932. doi:10.1002/pmic.200700099

    Article  CAS  PubMed  Google Scholar 

  • Anton BP, Chang YC, Brown P, Choi HP, Faller LL, Guleria J, Hu Z, Klitgord N, Levy-Moonshine A, Maksad A, Mazumdar V, McGettrick M, Osmani L, Pokrzywa R, Rachlin J, Swaminathan R, Allen B, Housman G, Monahan C, Rochussen K, Tao K, Bhagwat AS, Brenner SE, Columbus L, de Crecy-Lagard V, Ferguson D, Fomenkov A, Gadda G, Morgan RD, Osterman AL, Rodionov DA, Rodionova IA, Rudd KE, Soll D, Spain J, Xu SY, Bateman A, Blumenthal RM, Bollinger JM, Chang WS, Ferrer M, Friedberg I, Galperin MY, Gobeill J, Haft D, Hunt J, Karp P, Klimke W, Krebs C, Macelis D, Madupu R, Martin MJ, Miller JH, O’Donovan C, Palsson B, Ruch P, Setterdahl A, Sutton G, Tate J, Yakunin A, Tchigvintsev D, Plata G, Hu J, Greiner R, Horn D, Sjolander K, Salzberg SL, Vitkup D, Letovsky S, Segre D, DeLisi C, Roberts RJ, Steffen M, Kasif S (2013) The COMBREX project: design, methodology, and initial results. PLoS Biol 11(8):e1001638. doi:10.1371/journal.pbio.1001638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anton BP, Kasif S, Roberts RJ, Steffen M (2014) Objective: biochemical function. Front Genet 5:210. doi:10.3389/fgene.2014.00210

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29(2):231–262. doi:10.1016/j.femsre.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  • Binkowski TA, Freeman P, Liang J (2004) pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Res 32 (Web Server issue):W555–558. doi:10.1093/nar/gkh390

  • Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, Rommens JM (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33(1):97–101. doi:10.1038/ng1062

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellrott K, Zmasek CM, Weekes D, Sri Krishna S, Bakolitsa C, Godzik A, Wooley J (2011) TOPSAN: a dynamic web database for structural genomics. Nucleic Acids Res 39 (Database issue):D494–496. doi:10.1093/nar/gkq902

  • Fox BG, Goulding C, Malkowski MG, Stewart L, Deacon A (2008) Structural genomics: from genes to structures with valuable materials and many questions in between. Nat Methods 5(2):129–132. doi:10.1038/nmeth0208-129

    Article  CAS  PubMed  Google Scholar 

  • Gabaldon T (2008) Comparative genomics-based prediction of protein function. Methods Mol Biol 439:387–401. doi:10.1007/978-1-59745-188-8_26

    Article  CAS  PubMed  Google Scholar 

  • Gabaldon T, Huynen MA (2004) Prediction of protein function and pathways in the genome era. Cell Mol Life Sci 61(7–8):930–944. doi:10.1007/s00018-003-3387-y

    Article  CAS  PubMed  Google Scholar 

  • Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70:209–246. doi:10.1146/annurev.biochem.70.1.209

    Article  CAS  PubMed  Google Scholar 

  • Giles J (2007) Key biology databases go wiki. Nature 445(7129):691. doi:10.1038/445691a

    Article  CAS  PubMed  Google Scholar 

  • Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM (2006) A method for localizing ligand binding pockets in protein structures. Proteins 62(2):479–488. doi:10.1002/prot.20769

    Article  CAS  PubMed  Google Scholar 

  • Granum PE, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38 (Web Server issue):W545–549. doi:10.1093/nar/gkq366

  • Huang L, Hung L, Odell M, Yokota H, Kim R, Kim SH (2002) Structure-based experimental confirmation of biochemical function to a methyltransferase, MJ0882, from hyperthermophile Methanococcus jannaschii. J Struct Funct Genomics 2(3):121–127

    Article  CAS  PubMed  Google Scholar 

  • Hwang KY, Chung JH, Kim SH, Han YS, Cho Y (1999) Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat Struct Biol 6(7):691–696. doi:10.1038/10745

    Article  CAS  PubMed  Google Scholar 

  • Khafizov K, Madrid-Aliste C, Almo SC, Fiser A (2014) Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative. Proc Natl Acad Sci U S A 111(10):3733–3738. doi:10.1073/pnas.1321614111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394(6693):595–599. doi:10.1038/29106

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Shin DH, Choi IG, Schulze-Gahmen U, Chen S, Kim R (2003) Structure-based functional inference in structural genomics. J Struct Funct Genomics 4(2–3):129–135

    Article  CAS  PubMed  Google Scholar 

  • Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2256–2268. doi:10.1107/S0907444904026460

    Article  CAS  PubMed  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797. doi:10.1016/j.jmb.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  • Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofanov VY, Kimmel M, Kavraki LE, Lichtarge O (2008) Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. BMC Bioinform 9:17. doi:10.1186/1471-2105-9-17

    Article  Google Scholar 

  • Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF (2005) Enzyme genomics: application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29(2):263–279. doi:10.1016/j.femsre.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13(5):323–330, 307–328.

    Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005a) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33 (Web Server issue):W89–93. doi:10.1093/nar/gki414

  • Laskowski RA, Watson JD, Thornton JM (2005b) Protein function prediction using local 3D templates. J Mol Biol 351(3):614–626

    Article  CAS  PubMed  Google Scholar 

  • Lee D, de Beer TA, Laskowski RA, Thornton JM, Orengo CA (2011) 1,000 structures and more from the MCSG. BMC Struct Biol 11:2. doi:10.1186/1472-6807-11-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees J, Yeats C, Perkins J, Sillitoe I, Rentzsch R, Dessailly BH, Orengo C (2012) Gene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis. Nucleic Acids Res 40 (Database issue):D465–471. doi:10.1093/nar/gkr1181

  • Mons B, Ashburner M, Chichester C, van Mulligen E, Weeber M, den Dunnen J, van Ommen GJ, Musen M, Cockerill M, Hermjakob H, Mons A, Packer A, Pacheco R, Lewis S, Berkeley A, Melton W, Barris N, Wales J, Meijssen G, Moeller E, Roes PJ, Borner K, Bairoch A (2008) Calling on a million minds for community annotation in WikiProteins. Genome Biol 9(5):R89. doi:10.1186/gb-2008-9-5-r89

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadzirin N, Firdaus-Raih M (2012) Proteins of unknown function in the Protein Data Bank (PDB): an inventory of true uncharacterized proteins and computational tools for their analysis. Int J Mol Sci 13(10):12761–12772. doi:10.3390/ijms131012761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norvell JC, Berg JM (2007) Update on the protein structure initiative. Structure 15(12):1519–1522. doi:10.1016/j.str.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Noskov VN, Staak K, Shcherbakova PV, Kozmin SG, Negishi K, Ono BC, Hayatsu H, Pavlov YI (1996) HAM1, the gene controlling 6-N-hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae. Yeast 12(1):17–29. doi:10.1002/(SICI)1097-0061(199601)12:1<17:AID-YEA875>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  • Pal D, Eisenberg D (2005) Inference of protein function from protein structure. Structure 13(1):121–130. doi:10.1016/j.str.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  • Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32 (Database issue):D129–133. doi:10.1093/nar/gkh028

  • Prilusky J, Hodis E, Canner D, Decatur WA, Oberholser K, Martz E, Berchanski A, Harel M, Sussman JL (2011) Proteopedia: a status report on the collaborative, 3D web-encyclopedia of proteins and other biomolecules. J Struct Biol 175(2):244–252. doi:10.1016/j.jsb.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot M, Kuznetsova E, Sanders SA, Gonzalez CF, Brown G, Edwards AM, Arrowsmith CH, Yakunin AF (2008) High throughput screening of purified proteins for enzymatic activity. Methods Mol Biol 426:331–341. doi:10.1007/978-1-60327-058-8_21

    Article  CAS  PubMed  Google Scholar 

  • Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC (2014) The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43 (Database issue):D1099–1106. doi:10.1093/nar/gku950

  • Rigden DJ (2006) Understanding the cell in terms of structure and function: insights from structural genomics. Curr Opin Biotechnol 17(5):457–464. doi:10.1016/j.copbio.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  • Rigden DJ, Eberhardt RY, Gilbert HJ, Xu Q, Chang Y, Godzik A (2014) Structure- and context-based analysis of the GxGYxYP family reveals a new putative class of glycoside hydrolase. BMC Bioinform 15:196. doi:10.1186/1471-2105-15-196

    Article  Google Scholar 

  • Rost B (2002) Enzyme function less conserved than anticipated. J Mol Biol 318(2):595–608. doi:10.1016/S0022-2836(02)00016-5

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40 (Web Server issue):W471–477. doi:10.1093/nar/gks372

  • Saikolappan S, Das K, Sasindran SJ, Jagannath C, Dhandayuthapani S (2011) OsmC proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis protect against organic hydroperoxide stress. Tuberculosis (Edinb) 91(Suppl 1):S119–127. doi:10.1016/j.tube.2011.10.021

    Article  CAS  Google Scholar 

  • Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evdokimova E, Doherty-Kirby A, Lajoie GA, Thornton JM, Arrowsmith CH, Savchenko A, Joachimiak A, Edwards AM (2003) Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J Biol Chem 278(28):26039–26045. doi:10.1074/jbc.M303867200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savchenko A, Krogan N, Cort JR, Evdokimova E, Lew JM, Yee AA, Sanchez-Pulido L, Andrade MA, Bochkarev A, Watson JD, Kennedy MA, Greenblatt J, Hughes T, Arrowsmith CH, Rommens JM, Edwards AM (2005) The Shwachman-Bodian-Diamond syndrome protein family is involved in RNA metabolism. J Biol Chem 280(19):19213–19220. doi:10.1074/jbc.M414421200

    Article  CAS  PubMed  Google Scholar 

  • Schade M, Turner CJ, Lowenhaupt K, Rich A, Herbert A (1999) Structure-function analysis of the Z-DNA-binding domain Zalpha of dsRNA adenosine deaminase type I reveals similarity to the (alpha + beta) family of helix-turn-helix proteins. EMBO J 18(2):470–479. doi:10.1093/emboj/18.2.470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure 8(6):605–615

    Article  CAS  PubMed  Google Scholar 

  • Sciara G, Kendrew SG, Miele AE, Marsh NG, Federici L, Malatesta F, Schimperna G, Savino C, Vallone B (2003) The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J 22(2):205–215. doi:10.1093/emboj/cdg031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Service R (2005) Structural biology. Structural genomics, round 2. Science 307(5715):1554–1558. doi:10.1126/science.307.5715.1554

    Article  PubMed  Google Scholar 

  • Simon GM, Cravatt BF (2010) Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J Biol Chem 285(15):11051–11055. doi:10.1074/jbc.R109.097600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark A, Russell RB (2003) Annotation in three dimensions. PINTS: patterns in non-homologous tertiary structures. Nucleic Acids Res 31(13):3341–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehr H, Duarte JM, Lappe M, Bhak J, Bolser DM (2010) PDBWiki: added value through community annotation of the Protein Data Bank. Database (Oxford) 2010:baq009. doi:10.1093/database/baq009

  • Stepchenkova EI, Kozmin SG, Alenin VV, Pavlov YI (2005) Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast. BMC Genet 6:31. doi:10.1186/1471-2156-6-31

    Article  PubMed  PubMed Central  Google Scholar 

  • Teichmann SA, Murzin AG, Chothia C (2001) Determination of protein function, evolution and interactions by structural genomics. Curr Opin Struct Biol 11(3):354–363

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333(4):863–882

    Article  CAS  PubMed  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307(4):1113–1143. doi:10.1006/jmbi.2001.4513

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Sanderson S, Ezersky A, Savchenko A, Edwards A, Orengo C, Joachimiak A, Laskowski RA, Thornton JM (2007) Towards fully automated structure-based function prediction in structural genomics: a case study. J Mol Biol 367(5):1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Ko J, Murga LF, Ondrechen MJ (2007) Selective prediction of interaction sites in protein structures with THEMATICS. BMC Bioinform 8:119. doi:10.1186/1471-2105-8-119

    Article  Google Scholar 

  • Whisstock JC, Lesk AM (2003) Prediction of protein function from protein sequence and structure. Q Rev Biophys 36(3):307–340

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Skaar EP, Zhang R, Joachimiak G, Gornicki P, Schneewind O, Joachimiak A (2005) Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J Biol Chem 280(4):2840–2846. doi:10.1074/jbc.M409526200

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Liang MP, Altman RB (2008) The SeqFEATURE library of 3D functional site models: comparison to existing methods and applications to protein function annotation. Genome Biol 9(1):R8. doi:10.1186/gb-2008-9-1-r8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Vicky Schneider for her useful comments on the first version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet M. Thornton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Watson, J.D., Laskowski, R.A., Thornton, J.M. (2017). Case Studies: Function Predictions of Structural Genomics Results. In: J. Rigden, D. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1069-3_14

Download citation

Publish with us

Policies and ethics