Aquaporins pp 51-62 | Cite as

Transport Characteristics of Aquaporins

  • Xiaoqiang Geng
  • Baoxue YangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 969)


Aquaporins (AQPs ) are a class of the integral membrane proteins, which are permeable to water, some small neutral solutes and certain gases across biological membranes. AQPs are considered as critical transport mediators that are involved in many physiological functions and pathological processes such as transepithelial fluid transport, cell migration, brain edema, neuro excitation and carcinoma. This chapter will provide information about the transport characteristics of AQPs .


Aquaporins AQPs Aquaglyceroporins Water channel 


  1. 1.
    Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels – from atomic structure to clinical medicine. J Physiol 542:3–16CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Benga G (2012) The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications. Mol Asp Med 33:518–534CrossRefGoogle Scholar
  3. 3.
    Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146CrossRefPubMedGoogle Scholar
  4. 4.
    Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550CrossRefPubMedGoogle Scholar
  5. 5.
    Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187CrossRefPubMedGoogle Scholar
  6. 6.
    Nagase H, Agren J, Saito A, Liu K, Agre P, Hazama A, Yasui M (2007) Molecular cloning and characterization of mouse aquaporin 6. Biochem Biophys Res Commun 352:12–16CrossRefPubMedGoogle Scholar
  7. 7.
    Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9. Am J Physiol Cell Physiol 304:C985–C994CrossRefPubMedGoogle Scholar
  8. 8.
    Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786CrossRefPubMedGoogle Scholar
  9. 9.
    Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328CrossRefPubMedGoogle Scholar
  10. 10.
    Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100:2945–2950CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340CrossRefPubMedGoogle Scholar
  12. 12.
    Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350CrossRefPubMedGoogle Scholar
  13. 13.
    Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320CrossRefPubMedGoogle Scholar
  14. 14.
    Zeuthen T (2002) General models for water transport across leaky epithelia. Int Rev Cytol 215:285–317CrossRefPubMedGoogle Scholar
  15. 15.
    O’Donnell MJ, Maddrell SH (1983) Paracellular and transcellular routes for water and solute movements across insect epithelia. J Exp Biol 106:231–253PubMedGoogle Scholar
  16. 16.
    Carlsson O, Nielsen S, Zakaria e-R, Rippe B (1996) In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Phys 271:H2254–H2262Google Scholar
  17. 17.
    Li C, Wang W (2014) Urea transport mediated by aquaporin water channel proteins. Subcell Biochem 73:227–265CrossRefPubMedGoogle Scholar
  18. 18.
    Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387CrossRefPubMedGoogle Scholar
  19. 19.
    Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440CrossRefPubMedGoogle Scholar
  20. 20.
    Zeidel ML, Nielsen S, Smith BL, Ambudkar SV, Maunsbach AB, Agre P (1994) Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33:1606–1615CrossRefPubMedGoogle Scholar
  21. 21.
    Hirano Y, Okimoto N, Kadohira I, Suematsu M, Yasuoka K, Yasui M (2010) Molecular mechanisms of how mercury inhibits water permeation through aquaporin-1: understanding by molecular dynamics simulation. Biophys J 98:1512–1519CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kuwahara M, Gu Y, Ishibashi K, Marumo F, Sasaki S (1997) Mercury-sensitive residues and pore site in AQP3 water channel. Biochemistry 36:13973–13978CrossRefPubMedGoogle Scholar
  23. 23.
    Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580CrossRefPubMedGoogle Scholar
  24. 24.
    Yasui M (2009) pH regulated anion permeability of aquaporin-6. Handb Exp Pharmacol:299–308Google Scholar
  25. 25.
    Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878CrossRefPubMedGoogle Scholar
  26. 26.
    de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357CrossRefPubMedGoogle Scholar
  27. 27.
    Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530CrossRefPubMedGoogle Scholar
  28. 28.
    Agre P (2004) Aquaporin water channels (Nobel Lecture). Angew Chem 43:4278–4290CrossRefGoogle Scholar
  29. 29.
    Kozono D, Yasui M, King LS, Agre P (2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 109:1395–1399CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105:1198–1203CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849PubMedGoogle Scholar
  32. 32.
    Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T et al (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A 91:6269–6273CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91:10997–11001CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232CrossRefPubMedGoogle Scholar
  35. 35.
    Hara-Chikuma M, Verkman AS (2006) Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci 63:1386–1392CrossRefPubMedGoogle Scholar
  36. 36.
    Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277:17147–17153CrossRefPubMedGoogle Scholar
  37. 37.
    Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 277:46616–46621CrossRefPubMedGoogle Scholar
  38. 38.
    Miranda M, Escote X, Ceperuelo-Mallafre V, Alcaide MJ, Simon I, Vilarrasa N, Wabitsch M, Vendrell J (2010) Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 2 diabetes: differences and similarities between depots. J Clin Endocrinol Metab 95:3470–3479CrossRefPubMedGoogle Scholar
  39. 39.
    Rodriguez A, Catalan V, Gomez-Ambrosi J, Fruhbeck G (2011) Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle 10:1548–1556CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rodriguez A, Catalan V, Gomez-Ambrosi J, Garcia-Navarro S, Rotellar F, Valenti V, Silva C, Gil MJ, Salvador J, Burrell MA, Calamita G, Malagon MM, Fruhbeck G (2011) Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab 96:E586–E597CrossRefPubMedGoogle Scholar
  41. 41.
    Maeda N, Funahashi T, Shimomura I (2008) Metabolic impact of adipose and hepatic glycerol channels aquaporin 7 and aquaporin 9, Nature clinical practice. Endocrinol Metab 4:627–634Google Scholar
  42. 42.
    Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128CrossRefPubMedGoogle Scholar
  43. 43.
    Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274CrossRefPubMedGoogle Scholar
  44. 44.
    Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743CrossRefPubMedGoogle Scholar
  45. 45.
    Ko SB, Uchida S, Naruse S, Kuwahara M, Ishibashi K, Marumo F, Hayakawa T, Sasaki S (1999) Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver. Biochem Mol Biol Int 47:309–318PubMedGoogle Scholar
  46. 46.
    Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819CrossRefPubMedGoogle Scholar
  47. 47.
    Cushny AR (1917) The excretion of urea and sugar by the kidney. J Physiol 51:36–44CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sands JM, Layton HE (2014) Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol 76:387–409CrossRefPubMedGoogle Scholar
  49. 49.
    Ishibashi K, Imai M, Sasaki S (2000) Cellular localization of aquaporin 7 in the rat kidney. Exp Nephrol 8:252–257CrossRefPubMedGoogle Scholar
  50. 50.
    Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflugers Arch – Eur J Physiol 448:181–186CrossRefGoogle Scholar
  51. 51.
    Meinild AK, Klaerke DA, Zeuthen T (1998) Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0-5. J Biol Chem 273:32446–32451CrossRefPubMedGoogle Scholar
  52. 52.
    Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 1850:2410–2421CrossRefPubMedGoogle Scholar
  53. 53.
    Sugiyama Y, Ota Y, Hara M, Inoue S (2001) Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta 1522:82–88CrossRefPubMedGoogle Scholar
  54. 54.
    Laforenza U, Gastaldi G, Grazioli M, Cova E, Tritto S, Faelli A, Calamita G, Ventura U (2005) Expression and immunolocalization of aquaporin-7 in rat gastrointestinal tract. Biol Cell/Under Auspice Eur Cell Biol Organ 97:605–613CrossRefGoogle Scholar
  55. 55.
    Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A, Jaenicke T, Rodriguez-Martin M, Trullas C, Hupe M, Elias PM, Krutmann J (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol 132:1561–1572CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97:4386–4391CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhao D, Bankir L, Qian L, Yang D, Yang B (2006) Urea and urine concentrating ability in mice lacking AQP1 and AQP3. Am J Physiol Ren Physiol 291:F429–F438CrossRefGoogle Scholar
  58. 58.
    Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126CrossRefPubMedGoogle Scholar
  59. 59.
    Cooper GJ, Boron WF (1998) Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Phys 275:C1481–C1486Google Scholar
  60. 60.
    Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J Off Publ Fed Am Soc Exp Biol 20:1974–1981Google Scholar
  61. 61.
    Itel F, Al-Samir S, Oberg F, Chami M, Kumar M, Supuran CT, Deen PM, Meier W, Hedfalk K, Gros G, Endeward V (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J Off Publ Fed Am Soc Exp Biol 26:5182–5191Google Scholar
  62. 62.
    Fang X, Yang B, Matthay MA, Verkman AS (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. J Physiol 542:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yang B, Fukuda N, van Hoek A, Matthay MA, Ma T, Verkman AS (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 275:2686–2692CrossRefPubMedGoogle Scholar
  64. 64.
    Furchgott RF (1990) The 1989 Ulf von Euler lecture. Studies on endothelium-dependent vasodilation and the endothelium-derived relaxing factor. Acta Physiol Scand 139:257–270CrossRefPubMedGoogle Scholar
  65. 65.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376CrossRefPubMedGoogle Scholar
  66. 66.
    Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526CrossRefPubMedGoogle Scholar
  67. 67.
    Gannon BJ, Carati CJ (2003) Endothelial distribution of the membrane water channel molecule aquaporin-1: implications for tissue and lymph fluid physiology? Lymphat Res Biol 1:55–66CrossRefPubMedGoogle Scholar
  68. 68.
    Herrera M, Hong NJ, Garvin JL (2006) Aquaporin-1 transports NO across cell membranes. Hypertension 48:157–164CrossRefPubMedGoogle Scholar
  69. 69.
    Herrera M, Garvin JL (2007) Novel role of AQP-1 in NO-dependent vasorelaxation. Am J Physiol Ren Physiol 292:F1443–F1451CrossRefGoogle Scholar
  70. 70.
    Herrera M, Garvin JL (2011) Aquaporins as gas channels. Pflugers Arch – Eur J Physiol 462:623–630CrossRefGoogle Scholar
  71. 71.
    Wang Y, Tajkhorshid E (2010) Nitric oxide conduction by the brain aquaporin AQP4. Proteins 78:661–670PubMedPubMedCentralGoogle Scholar
  72. 72.
    Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch – Eur J Physiol 450:415–428CrossRefGoogle Scholar
  73. 73.
    Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106:5406–5411CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Saparov SM, Liu K, Agre P, Pohl P (2007) Fast and selective ammonia transport by aquaporin-8. J Biol Chem 282:5296–5301CrossRefPubMedGoogle Scholar
  75. 75.
    Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157:534–544CrossRefPubMedGoogle Scholar
  76. 76.
    Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591CrossRefPubMedGoogle Scholar
  77. 77.
    Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192CrossRefPubMedGoogle Scholar
  78. 78.
    Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604CrossRefPubMedGoogle Scholar
  79. 79.
    Vieceli Dalla Sega F, Zambonin L, Fiorentini D, Rizzo B, Caliceti C, Landi L, Hrelia S, Prata C (2014) Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochim Biophys Acta 1843:806–814CrossRefPubMedGoogle Scholar
  80. 80.
    Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, Miyachi Y (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209:1743–1752CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107:15681–15686CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879CrossRefPubMedGoogle Scholar
  83. 83.
    Yool AJ, Weinstein AM (2002) New roles for old holes: ion channel function in aquaporin-1. News Physiol Sci Int J Physiol Prod Joint Int Union Physiol Sci Am Physiol Soc 17:68–72Google Scholar
  84. 84.
    Yool AJ, Stamer WD, Regan JW (1996) Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 273:1216–1218CrossRefPubMedGoogle Scholar
  85. 85.
    Anthony TL, Brooks HL, Boassa D, Leonov S, Yanochko GM, Regan JW, Yool AJ (2000) Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol Pharmacol 57:576–588PubMedGoogle Scholar
  86. 86.
    Yool AJ, Campbell EM (2012) Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Asp Med 33:553–561CrossRefGoogle Scholar
  87. 87.
    Zampighi GA, Hall JE, Kreman M (1985) Purified lens junctional protein forms channels in planar lipid films. Proc Natl Acad Sci U S A 82:8468–8472CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230CrossRefPubMedGoogle Scholar
  89. 89.
    Modesto E, Barcellos L, Campos-de-Carvalho AC (1990) MIP 28 forms channels in planar lipid bilayers. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica … [et al.] 23:1029–1032Google Scholar
  90. 90.
    Yool AJ (2007) Aquaporins: multiple roles in the central nervous system. Neurosci Rev J Bring Neurobiol Neurol Psychiatry 13:470–485Google Scholar
  91. 91.
    Garneau AP, Carpentier GA, Marcoux AA, Frenette-Cotton R, Simard CF, Remus-Borel W, Caron L, Jacob-Wagner M, Noel M, Powell JJ, Belanger R, Cote F, Isenring P (2015) Aquaporins mediate silicon transport in humans. PLoS One 10:e0136149CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Pharmacology, School of Basic Medical SciencesPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
  3. 3.Key Laboratory of Molecular Cardiovascular Sciences, Ministry of EducationPeking UniversityBeijingChina

Personalised recommendations