Advertisement

Aquaporins pp 263-276 | Cite as

Methods to Measure Water Permeability

  • Evgeniy I. SolenovEmail author
  • Galina S. Baturina
  • Liubov E. Katkova
  • Sotirios G. Zarogiannis
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 969)

Abstract

Water permeability is a key feature of the cell plasma membranes and it has seminal importance for a number of cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels, the aquaporins, who have very important function in physiological and pathophysiological states. Due to the above the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the past three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells as well as in tissues with a focus in the first category.

Keywords

Aquaporin Cell volume Osmotic water permeability Plasma membrane 

References

  1. 1.
    Danziger J, Ziedel ML (2015) Osmotic homeostasis. Clin J Am Soc Nephrol 10:852–862CrossRefPubMedGoogle Scholar
  2. 2.
    Hoffman EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Phys Rev 89:193–277Google Scholar
  3. 3.
    Lambert IH, Hoffman EK, Pedersen SF (2008) Cell volume regulation: physiology and pathophysiology. Acts Physiol 194:255–282CrossRefGoogle Scholar
  4. 4.
    Verkman AS (2011) Aquaporins at a glance. J Cell Sci 124:2107–2112CrossRefPubMedGoogle Scholar
  5. 5.
    Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ma T, Gao H, Fang X, Yang H (2012) Water channel proteins in the peripheral nervous system in health and disease. Mol Asp Med 33:605–611CrossRefGoogle Scholar
  7. 7.
    Verkman AS (2007) Role of aquaporins in lung liquid physiology. Respir Physiol Neurobiol 159:324–330CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Holmes RP (2012) The role of renal water channels in health and disease. Mol Asp Med 33:547–552CrossRefGoogle Scholar
  9. 9.
    Rutkovskiy A, Valen G, Vaage J (2013) Cardiac aquaporins. Basic Res Cardiol 108:393–410CrossRefPubMedGoogle Scholar
  10. 10.
    Laforenza U (2012) Water channels in the gastrointestinal tract. Mol Asp Med 33:642–650CrossRefGoogle Scholar
  11. 11.
    Zhang D, Tan YJ, Qu F, Sheng JZ, Huang HF (2012) Functions of water channels in male and female reproductive systems. Mol Asp Med 33:676–690CrossRefGoogle Scholar
  12. 12.
    Eckhard A, Gleiser C, Arnold H, Rask-Andersen H, Kumagami H, Muller M, Hirt B, Lowenheim H (2012) Water channel proteins in the inner ear and their link to hearing impairment and deafness. Mol Asp Med 33:612–637CrossRefGoogle Scholar
  13. 13.
    Fischbarg J (2012) Water channels and their roles in some ocular tissues. Mol Asp Med 33:638–641CrossRefGoogle Scholar
  14. 14.
    Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128:2145–2151CrossRefPubMedGoogle Scholar
  15. 15.
    Bout-Jabot M, Daraspe J, Bonte F, Perrier E, Schnebert S, Dumas M, Verbavatz JM (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol 190:205–217CrossRefGoogle Scholar
  16. 16.
    Loonen AJ, Knoers NV, van Os CH, Deen PM (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28:252–265CrossRefPubMedGoogle Scholar
  17. 17.
    Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303–316CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13:259–277CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Strange K (2004) Cellular volume homeostasis. Adv Physiol Educ 28:155–159CrossRefPubMedGoogle Scholar
  20. 20.
    Ribatti D, Ranieri G, Annese T, Nico B (2014) Aquaporins in cancer. Biochip Biophys Acta 1840:1550–1553CrossRefGoogle Scholar
  21. 21.
    Verkman AS (2000) Water permeability measurement in living cells and complex tissues. J Membr Biol 173:73–87CrossRefPubMedGoogle Scholar
  22. 22.
    Hayden JH, Allen RD (1984) Detection of single microtubules in living cells: particle transport can occur in both directions along the same microtubule. J Cell Biol 99:1785–1793CrossRefPubMedGoogle Scholar
  23. 23.
    Allen RD, Weiss DG, Hayden JH, Brown DT, Fujiwake H, Simpson M (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752CrossRefPubMedGoogle Scholar
  24. 24.
    Foskett JK (1990) [Ca2+]i modulation of Cl content controls cell volume in single salivary acing cells during fluid secretion. Am J Phys Cell Phys 259:998–1004Google Scholar
  25. 25.
    Fujiwara S, Shimamoto C, Katsu K, Imai Y, Nakahari T (1999) Isosmotic modulation of Ca2+-regulated exocytosis in guinea-pig astral mucous cells: role of cell volume. J Physiol 516:85–100CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Solenov EI, Nesterov VV, Baturina GS, Khodus GR, Ivanova LN (2003) Effect of dDAVP on basolateral cell surface water permeability in the outer medullary collecting duct. Eur Biophys J 32:614–619CrossRefPubMedGoogle Scholar
  27. 27.
    Foskett JK, Melvin JE (1989) Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science 244:1582–1585CrossRefPubMedGoogle Scholar
  28. 28.
    Solenov EI, Ivanova LN (1999) Morphometric analysis of the effects of vasopressin in the rat kidney collecting tubules. Ross Fiziol Zh Im I M Sechenova 85:290–297 [Article in Russian]Google Scholar
  29. 29.
    Maltsev VP (1994) Estimation of morphological characteristics of single particles from light scattering data in flow cytometry. Russ Chem Bull 43:1115–1124CrossRefGoogle Scholar
  30. 30.
    Kuksin D, Kuksin CA, Qiu J, Chan LLY (2016) Cellometer image cytometry as a complementary tool to flow cytometry for verifying gated cell populations. Anal Biochem 503:1–7CrossRefPubMedGoogle Scholar
  31. 31.
    Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV (2008) Nanoelectrochemistry of mammalian cells. PNAS 105:443–448CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels: extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1036–1074CrossRefGoogle Scholar
  33. 33.
    Benitez R, Toca-Herrera JL (2014) Looking at cell mechanics with atomic force microscopy: experiment and theory. Microsc Res Tech 77:947–958CrossRefPubMedGoogle Scholar
  34. 34.
    Korchev YE, Bashford CL, Milovanovic M, Vodyanov I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73:653–658CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Korchev YE, Milovanovic M, Ashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J Microsc 188:17–23CrossRefPubMedGoogle Scholar
  36. 36.
    Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6:279–281CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fischbarg J, Li J, Kuang K, Echevarria M, Iserovich P (1993) Determination of volume and water permeability of plated cells from measurements of light scattering. Am J Phys Cell Phys 265:1412–1423Google Scholar
  38. 38.
    Chernyshev AV, Prots VI, Doroshkin AA, Maltsev VP (1995) Measurement of scattering properties of individual particles with a scanning flow cytometer. Appl Opt 34:6301–6305CrossRefPubMedGoogle Scholar
  39. 39.
    Maltsev VP, Chernyshev AV, Sem’yanov KA, Soini E (1996) Absolute real-time measurement of particle size distribution with the flying light-scattering indicatrix method. Appl Opt 35:3276–3280CrossRefGoogle Scholar
  40. 40.
    Verkman AS, Dix JA, Seifter JL (1985) Water and urea transport in renal microvillus membrane vesicles. Am J Phys 248:650–655Google Scholar
  41. 41.
    Mlekoday HJ, Moore R, Levitt DG (1983) Osmotic water permeability of the human red cells, dependence on direction of water flow and cell volume. J Gen Physiol 81:213–220CrossRefPubMedGoogle Scholar
  42. 42.
    Gorman A, McCarthy JV, Finnucane D, Reville W, Cotter TG (1996) Morphological aspects of apoptosis and necrosis. In: Cotter TG, Martin SJ (eds) Techniques in apoptosis: a user’s guide. Portland Press Ltd., LondonGoogle Scholar
  43. 43.
    Fischbarg J, Kuang KY, Hirsch J, Lecuona S, Rogozinski L, Silverstein SC, Loike J (1989) Evidence that the glucose transporter serves as a water channel in J774 macrophages. Proc Natl Acad Sci U S A 86:8397–8401CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S (2010) Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem 285:40777–40784CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Van Hoek AN, Verkman AS (1992) Functional reconstitution of the isolated erythrocyte water channel CHIP28. J Biol Chem 267:18267–18269PubMedGoogle Scholar
  46. 46.
    Dobbs L, Gonzalez R, Matthay MA, Carter EP, Allen L, Verkman AS (1998) Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. PNAS 95:2991–2996CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Baturina GS, Khodus GR, Nesterov VV, Solenov EI, Ivanova LN (2003) Vasopressin-dependent water permeability of the basolateral membrane of the kidney outer medullary collecting duct in postnatal ontogenesis in rats]. Ross Fiziol Zh Im I M Sechenova 89:605–612 [Article in Russian]Google Scholar
  48. 48.
    Khodus GR, Solenov EI, Nesterov VV, Katkova LE, Ivanova LN (2006) Calcium dependent mechanisms in vasopressin regulation of osmotic water permeability in the mouse kidney collecting duct cells. Ross Fiziol Zh Im I M Sechenova 92:626–632 [Article in Russian]Google Scholar
  49. 49.
    Farinas J, Kneen M, Moore M, Verkman AS (1997) Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J Gen Physiol 110:283–296CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67:1291–1300CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Maric K, Wiesner B, Lorenz D, Klussmann E, Betz T, Rosenthal W (1993) Cell volume kinetics of adherent epithelial cells measured by laser scanning reflection microscopy: determination of water permeability changes of renal principal cells. Biophys J 80:1783–1790CrossRefGoogle Scholar
  52. 52.
    Farinas J, Verkman AS (1996) Measurement of cell volume and water permeability in epithelial cell layers by interferometry. Biophys J 71:3511–3522CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chen J, Xue C, Zhao Y, Chen D, Wu MH, Wang J (2015) Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci 16:9804–9830CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11:407–412CrossRefPubMedGoogle Scholar
  55. 55.
    Ali A, Aboulela Y, Amer S, Fukushima R, Emara S, Equis A, Cotte Y, Masujima T (2016) Quantitative live single-cell mass spectrometry with spatial evaluation by three-dimensional holographic and tomographic laser microscopy. Anal Sci 32:125–127CrossRefPubMedGoogle Scholar
  56. 56.
    Sun T, Tsuda S, Zauner KP, Morgan H (2010) On-chip electrical impedance tomography for imaging biological cells. Biosens Bioelectron 25:1109–1115CrossRefPubMedGoogle Scholar
  57. 57.
    Bera TK (2014) Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng 2014:381251CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Manson MA, Ahmad MR (2015) Single cell electrical characterisation techniques. Int J Mol Sci 16:12686–12712CrossRefGoogle Scholar
  59. 59.
    Zelenina M, Brisker H (2000) Osmotic water permeability measurements using confocal laser scanning microscopy. Our Biophys J 29:165–171Google Scholar
  60. 60.
    Ölveczky BP, Periasamy N, Verkman AS (1997) Mapping fluorophore angle-total internal reflection fluorescence microscopy. Biophys J 73:2836–2847CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Farinas J, Simenak V, Verkman AS (1995) Cell volume measured in adherent cells by total internal reflection microfluorimetry: application to permeability in cells transfected with water channel homologs. Biophys J 68:1613–1620CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Winterflood CM, Seeger S (2016) Simultaneous surface-near and solution fluorescence correlation spectroscopy. J Fluoresc 26:753–756CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hamann S, Kiilgaard JF, Litman T, Alvarez-Leefmans FG, Winther BR, Zeuthen T (2002) Measurement of cell volume changes by fluorescence self-quenching. J Fluoresc 12:139–145CrossRefGoogle Scholar
  64. 64.
    Solenov E, Watanabe H, Manley GT, Vermin AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Phys Cell Phys 286:426–432CrossRefGoogle Scholar
  65. 65.
    Zarogiannis SG, Ilyaskin AV, Baturina GS, Katkova LE, Medvedev DA, Karpov DI, Ershov AP, Solenov EI (2013) Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks. Math Biosci 244:176–187CrossRefPubMedGoogle Scholar
  66. 66.
    Jin BJ, Esteva-Font C, Verkman AS (2015) Droplet-based microfluidic platform for measurement of rapid erythrocyte water transport. Lab Chip 15:3380–3390CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jin BJ, Battula S, Zachos N, Kovbasnjuk O, Fawlke-Abel J, In J, Donowitz M, Vermin AS (2014) Microfluidics platform for measurement of volume changes in immobilized intestinal enteroids. Biomicrofluidics 8:024106CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Schacht P, Johnson SB, Santi PA (2010) Implementation of a continuous scanning procedure and a line scan camera for thin-sheet laser imaging microscopy. Biomed Opt Express 1:598–609CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Reynaud EG, Peychl J, Huisken J, Tomancak P (2015) Guide to light-sheet microscopy for adventurous biologists. Nat Methods 12:30–34CrossRefPubMedGoogle Scholar
  71. 71.
    Dean KM, Roudot P, Reis CR, Welf ES, Mettlen M, Fiolka R (2016) Diagonally scanned light-sheet microscopy for fast volumetric imaging of adherent cells. Biophys J 110:1456–1465CrossRefPubMedGoogle Scholar
  72. 72.
    Song Y, Yang B, Matthay MA, Ma T, Verkman AS (2000) Role of aquaporin water channels in pleural fluid dynamics. Am J Phys Cell Phys 279:1744–1750Google Scholar
  73. 73.
    Jiang J, Hu J, Bai C (2003) Role of aquaporin and sodium channel in pleural water movement. Respir Physiol Neurobiol 139:83–88CrossRefPubMedGoogle Scholar
  74. 74.
    Zarogiannis S, Psallidas I, Hatzoglou C, Gourgoulianis KI, Kalomenidis I (2010) Dexamethasone acutely accelerates pleural fluid absorption in mice hydrothoraces. J Physiol Sci 60:299–302CrossRefPubMedGoogle Scholar
  75. 75.
    Kouritas VK, Magkouta S, Zisis C, Psallidas I, Gourgoulianis KI, Kalomenidis I (2015) Paracetamol and ibuprofen block hydrothorax absorption in mice. Eur J Cardiothorac Surg 47:426–430CrossRefPubMedGoogle Scholar
  76. 76.
    Zarogiannis S, Kalomenidis I (2015) Can pharmacologic agents speed the rate of resorption of pleural fluid? Curr Opin Pulm Med 21:372–375CrossRefPubMedGoogle Scholar
  77. 77.
    Andersen B, Ussing HH (1957) Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol Scand 39:228–239CrossRefPubMedGoogle Scholar
  78. 78.
    Hays RM, Franki N, Soberman R (1971) Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis. J Clin Invest 50:1016–1018CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Natochin YV, Shakhmatova EI (1976) The effect of diuretics and vasopressin on the osmotic permeability of the frog urinary bladder. Physiol Bohemoslov 25:529–534PubMedGoogle Scholar
  80. 80.
    Ivanova LN, Melidi NN (2001) Effects of vasopressin on hyaluronate hydrolase activities and water permeability in the frog urinary bladder. Pflugers Arch 443:72–77CrossRefPubMedGoogle Scholar
  81. 81.
    Komissarchik YY, Natochin YV, Snigirevskaya ES, Shakhmatova EI (1985) Specific vacuolation of frog urinary bladder granular cell after ADH stimulation of water transport. Gen Physiol Biophys 4:557–572Google Scholar
  82. 82.
    Nikitidou O, Peppa VI, Leivaditis K, Eleftheriadis T, Zarogiannis SG, Liakopoulos V (2015) Animal models in peritoneal dialysis. Front Physiol 6:244CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Vogiatzidis K, Zarogiannis SG, Aidonidis I, Solenov EI, Molyvdas PA, Gourgoulianis KI, Hatzoglou C (2015) Physiology of pericardial fluid production and drainage. Front Physiol 6:62CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Stefanidis I, Liakopoulos V, Kourti P, Zarogiannis S, Poultsidi A, Mertems PR, Salmas M, Hatzoglou C, Gourgoulianis K, Molyvdas PA (2007) Amiloride-sensitive sodium channels on the parietal human peritoneum: evidence by ussing-type chamber experiments. ASAIO J 53:335–338CrossRefPubMedGoogle Scholar
  85. 85.
    Liakopoulos V, Zarogiannis S, Hatzoglou C, Kourti P, Poultsidi A, Eleftheriadis T, Gourgoulianis K, Molyvdas PA, Stefanidis I (2006) Inhibition by mercuric chloride of aquaporin-1 in the parietal sheep peritoneum: an electrophysiologic study. Adv Perit Dial 22:7–10PubMedGoogle Scholar
  86. 86.
    Kouritas VK, Hatzoglou C, Foroulis CN, Hevas A, Gourgoulianis KI, Molyvdas PA (2007) Low glucose level and low pH alter the electrochemical function of human parietal pleura. Eur Respir J 30:354–357CrossRefPubMedGoogle Scholar
  87. 87.
    Filippidis AS, Zarogiannis SG, Ioannou M, Gourgoulianis K, Molyvdas PA, Hatzoglou C (2012) Permeability of the arachnoid and pia mater. The role of ion channels in the leptomeningeal physiology. Childs Nerv Syst 28:533–540CrossRefPubMedGoogle Scholar
  88. 88.
    Garcia GJ, Boucher RC, Elston TC (2013) Biophysical model of ion transport across human respiratory epithelia allows quantification of ion permeabilities. Biophys J 104:716–726CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Solenov EI, Vetrivel L, Oshio K, Manley GT, Verkman AS (2002) Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice. J Neurosci Methods 113:85–90CrossRefPubMedGoogle Scholar
  90. 90.
    Hays RM, Franki N, Ding G (1987) Effects of antidiuretic hormone on the collecting duct. Kidney Int 31:530–537CrossRefPubMedGoogle Scholar
  91. 91.
    Burg MB, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Phys 210:1293–1298Google Scholar
  92. 92.
    Schafer JA, Patlak CS, Andreoli TE (1974) Osmosis in cortical collecting tubules a theoretical and experimental analysis of the osmotic transient phenomenon. J Gen Physiol 64:201–227PubMedPubMedCentralGoogle Scholar
  93. 93.
    Nawata CM, Evans KK, Dantzler WH, Pannabecker TL (2014) Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle’s loop. Am J Phys Renal Phys 306:123–129Google Scholar
  94. 94.
    Flamion B, Bungay PM, Gibson CC, Spring KR (1991) Flow rate measurements in isolated perfused kidney tubules by fluorescence photobleaching recovery. Biophys J 60:1229–1242CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ecelbarger CA, Chou CL, Lee AJ, Digiovanni SR, Verbalis JG, Knepper MA (1998) Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Phys 274:1161–1166Google Scholar
  96. 96.
    Al-Zahid G, Schafer JA, Troutman SL, Andreoli TE (1977) The effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J Membr Biol 31:103–130CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Evgeniy I. Solenov
    • 1
    • 2
    Email author
  • Galina S. Baturina
    • 1
  • Liubov E. Katkova
    • 1
  • Sotirios G. Zarogiannis
    • 3
  1. 1.Institute of Cytology and Genetics, SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of Physiology, Faculty of MedicineUniversity of Thessaly, BIOPOLISLarissaGreece

Personalised recommendations