Skip to main content

Water Transport Mediated by Other Membrane Proteins

  • Chapter
  • First Online:
Aquaporins

Abstract

Water transport through membrane is so intricate that there are still some debates. (Aquaporins) AQPs are entirely accepted to allow water transmembrane movement depending on osmotic gradient. Cotransporters and uniporters , however, are also concerned in water homeotatsis. Urea transporter B (UT-B) has a single-channel water permeability that is similar to AQP1. Cystic fibrosis transmembrane conductance regulator (CFTR ) was initially thought as a water channel but now not believed to transport water directly. By cotranporters, water is transported by water osmosis coupling with substrates, which explains how water is transported across the isolated small intestine. This chapter provides information about water transport mediated by other membrane proteins except AQPs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sands JM, Blount MA (2014) Genes and proteins of urea transporters. Subcell Biochem 73:45–63

    Article  CAS  PubMed  Google Scholar 

  2. Yang B, Verkman AS (2002) Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem 277(39):36782–36786

    Article  CAS  PubMed  Google Scholar 

  3. Ogami A, Miyazaki H, Niisato N, Sugimoto T, Marunaka Y (2006) UT-B1 urea transporter plays a noble role as active water transporter in C6 glial cells. Biochem Biophys Res Commun 351(3):619–624

    Article  CAS  PubMed  Google Scholar 

  4. Yang B, Verkman AS (1998) Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J Biol Chem 273(16):9369–9372

    Article  CAS  PubMed  Google Scholar 

  5. Yang B (2014) Transport characteristics of urea transporter-B. Subcell Biochem 73:127–135

    Article  CAS  PubMed  Google Scholar 

  6. Sidoux-Walter F, Lucien N, Olives B, Gobin R, Rousselet G, Kamsteeg EJ, Ripoche P, Deen PM, Cartron JP, Bailly P (1999) At physiological expression levels the Kidd blood group/urea transporter protein is not a water channel. J Biol Chem 274(42):30228–30235

    Article  CAS  PubMed  Google Scholar 

  7. Azouzi S, Gueroult M, Ripoche P, Genetet S, Colin Aronovicz Y, Le Van Kim C, Etchebest C, Mouro-Chanteloup I (2013) Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B. PLoS One 8(12):e82338

    Article  PubMed  PubMed Central  Google Scholar 

  8. Levin EJ, Quick M, Zhou M (2009) Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462(7274):757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440(7083):477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79(1 Suppl):S23–S45

    CAS  PubMed  Google Scholar 

  11. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91(12):5340–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM, Muallem S (2008) The Slc26a4 transporter functions as an electroneutral Cl−/I−/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. J Physiol 586(16):3813–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346(6282):362–365

    Article  CAS  PubMed  Google Scholar 

  14. Schreiber R, Greger R, Nitschke R, Kunzelmann K (1997) Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes. Pflugers Arch 434(6):841–847

    Article  CAS  PubMed  Google Scholar 

  15. Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous channel formed by CFTR. Science 258(5087):1477–1479

    Article  CAS  PubMed  Google Scholar 

  16. Schreiber R, Pavenstadt H, Greger R, Kunzelmann K (2000) Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator. FEBS Lett 475(3):291–295

    Article  CAS  PubMed  Google Scholar 

  17. Boj M, Chauvigne F, Cerda J (2015) Aquaporin biology of spermatogenesis and sperm physiology in mammals and teleosts. Biol Bull 229(1):93–108

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki-Toyota F, Ishibashi K, Yuasa S (1999) Immunohistochemical localization of a water channel, aquaporin 7 (AQP7), in the rat testis. Cell Tissue Res 295(2):279–285

    Article  CAS  PubMed  Google Scholar 

  19. Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY (2006) Function of aquaporins in female and male reproductive systems. Hum Reprod Update 12(6):785–795

    Article  CAS  PubMed  Google Scholar 

  20. Jesus TT, Bernardino RL, Martins AD, Sa R, Sousa M, Alves MG, Oliveira PF (2014) Aquaporin-4 as a molecular partner of cystic fibrosis transmembrane conductance regulator in rat Sertoli cells. Biochem Biophys Res Commun 446(4):1017–1021

    Article  CAS  PubMed  Google Scholar 

  21. Cheung KH, Leung CT, Leung GP, Wong PY (2003) Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Biol Reprod 68(5):1505–1510

    Article  CAS  PubMed  Google Scholar 

  22. Jesus TT, Bernardino RL, Martins AD, Sa R, Sousa M, Alves MG, Oliveira PF (2014) Aquaporin-9 is expressed in rat Sertoli cells and interacts with the cystic fibrosis transmembrane conductance regulator. IUBMB Life 66(9):639–644

    Article  CAS  PubMed  Google Scholar 

  23. Pietrement C, Da Silva N, Silberstein C, James M, Marsolais M, Van Hoek A, Brown D, Pastor-Soler N, Ameen N, Laprade R, Ramesh V, Breton S (2008) Role of NHERF1, cystic fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. J Biol Chem 283(5):2986–2996

    Article  CAS  PubMed  Google Scholar 

  24. Lauf PK, Adragna NC (2000) K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10(5–6):341–354

    CAS  PubMed  Google Scholar 

  25. Zeuthen T, MacAulay N (2002) Cotransporters as molecular water pumps. Int Rev Cytol 215:259–284

    Article  CAS  PubMed  Google Scholar 

  26. Ringel F, Plesnila N (2008) Expression and functional role of potassium-chloride cotransporters (KCC) in astrocytes and C6 glioma cells. Neurosci Lett 442(3):219–223

    Article  CAS  PubMed  Google Scholar 

  27. Karadsheh MF, Byun N, Mount DB, Delpire E (2004) Localization of the KCC4 potassium-chloride cotransporter in the nervous system. Neuroscience 123(2):381–391

    Article  CAS  PubMed  Google Scholar 

  28. Zeuthen T (1991) Water permeability of ventricular cell membrane in choroid plexus epithelium from Necturus maculosus. J Physiol 444:133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeuthen T (1994) Cotransport of K+, Cl− and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478(Pt 2):203–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mollajew R, Zocher F, Horner A, Wiesner B, Klussmann E, Pohl P (2010) Routes of epithelial water flow: aquaporins versus cotransporters. Biophys J 99(11):3647–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercado A, Song L, Vazquez N, Mount DB, Gamba G (2000) Functional comparison of the K+−Cl− cotransporters KCC1 and KCC4. J Biol Chem 275(39):30326–30334

    Article  CAS  PubMed  Google Scholar 

  32. Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E (1997) Expression of the Na(+)-K(+)-2Cl- cotransporter BSC2 in the nervous system. Am J Phys 272(1 Pt 1):C173–C183

    CAS  Google Scholar 

  33. Chen PY, Verkman AS (1988) Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubule. Biochemistry 27(2):655–660

    Article  CAS  PubMed  Google Scholar 

  34. Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269(26):17713–17722

    CAS  PubMed  Google Scholar 

  35. Dunn JJ, Lytle C, Crook RB (2001) Immunolocalization of the Na-K-Cl cotransporter in bovine ciliary epithelium. Invest Ophthalmol Vis Sci 42(2):343–353

    CAS  PubMed  Google Scholar 

  36. O'Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE (2004) Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 24(9):1046–1056

    Article  PubMed  Google Scholar 

  37. Hamann S, Herrera-Perez JJ, Bundgaard M, Alvarez-Leefmans FJ, Zeuthen T (2005) Water permeability of Na+−K+−2Cl- cotransporters in mammalian epithelial cells. J Physiol 568(Pt 1):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+−K+−2Cl(−) cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588(Pt 21):4089–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeuthen T, Macaulay N (2012) Cotransport of water by Na(+)-K(+)-2Cl(−) cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590(5):1139–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343(Pt 2):281–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamann S, Kiilgaard JF, la Cour M, Prause JU, Zeuthen T (2003) Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 76(4):493–504

    Article  CAS  PubMed  Google Scholar 

  42. Zeuthen T, Hamann S, la Cour M (1996) Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. J Physiol 497(Pt 1):3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamann S, la Cour M, Lui GM, Bundgaard M, Zeuthen T (2000) Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells. Pflugers Arch 440(1):84–92

    Article  CAS  PubMed  Google Scholar 

  44. MacAulay N, Hamann S, Zeuthen T (2004) Water transport in the brain: role of cotransporters. Neuroscience 129(4):1031–1044

    Article  CAS  PubMed  Google Scholar 

  45. Loo DD, Hirayama BA, Meinild AK, Chandy G, Zeuthen T, Wright EM (1999) Passive water and ion transport by cotransporters. J Physiol 518(Pt 1):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacAulay N, Zeuthen T, Gether U (2002) Conformational basis for the Li(+)-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1. J Physiol 544(Pt 2):447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    Article  CAS  PubMed  Google Scholar 

  48. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14(9):5559–5569

    CAS  PubMed  Google Scholar 

  49. MacAulay N, Gether U, Klaerke DA, Zeuthen T (2001) Water transport by the human Na+−coupled glutamate cotransporter expressed in Xenopus oocytes. J Physiol 530(Pt 3):367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meinild A, Klaerke DA, Loo DD, Wright EM, Zeuthen T (1998) The human Na+−glucose cotransporter is a molecular water pump. J Physiol 508(Pt 1):15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, Handler JS (1992) Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem 267(9):6297–6301

    CAS  PubMed  Google Scholar 

  52. Prasad PD, Wang H, Kekuda R, Fujita T, Fei YJ, Devoe LD, Leibach FH, Ganapathy V (1998) Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem 273(13):7501–7506

    Article  CAS  PubMed  Google Scholar 

  53. Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379(6564):458–460

    Article  CAS  PubMed  Google Scholar 

  54. Tappenden KA (1999) The human Na+ glucose cotransporter is a molecular water pump. JPEN J Parenter Enteral Nutr 23(3):173–174

    Article  CAS  PubMed  Google Scholar 

  55. Loo DD, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci U S A 93(23):13367–13370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeuthen T, Meinild AK, Loo DD, Wright EM, Klaerke DA (2001) Isotonic transport by the Na+−glucose cotransporter SGLT1 from humans and rabbit. J Physiol 531(Pt 3):631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Charron FM, Blanchard MG, Lapointe JY (2006) Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport. Biophys J 90(10):3546–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeuthen T, Zeuthen E (2007) The mechanism of water transport in Na+−coupled glucose transporters expressed in Xenopus oocytes. Biophys J 93(4):1413–1416 Discussion 1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeuthen T, Belhage B, Zeuthen E (2006) Water transport by Na+−coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. J Physiol 570(Pt 3):485–499

    Article  CAS  PubMed  Google Scholar 

  60. Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234(2):57–73

    Article  CAS  PubMed  Google Scholar 

  61. O'Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  Google Scholar 

  62. Groger N, Frohlich H, Maier H, Olbrich A, Kostin S, Braun T, Boettger T (2010) SLC4A11 prevents osmotic imbalance leading to corneal endothelial dystrophy, deafness, and polyuria. J Biol Chem 285(19):14467–14474

    Article  PubMed  PubMed Central  Google Scholar 

  63. Parker MD, Ourmozdi EP, Tanner MJ (2001) Human BTR1, a new bicarbonate transporter superfamily member and human AE4 from kidney. Biochem Biophys Res Commun 282(5):1103–1109

    Article  CAS  PubMed  Google Scholar 

  64. Vilas GL, Loganathan SK, Liu J, Riau AK, Young JD, Mehta JS, Vithana EN, Casey JR (2013) Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Hum Mol Genet 22(22):4579–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pajor AM (2006) Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch 451(5):597–605

    Article  CAS  PubMed  Google Scholar 

  66. Markovich D, Forgo J, Stange G, Biber J, Murer H (1993) Expression cloning of rat renal Na+/SO4(2−) cotransport. Proc Natl Acad Sci U S A 90(17):8073–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wright EM (1985) Transport of carboxylic acids by renal membrane vesicles. Annu Rev Physiol 47:127–141

    Article  CAS  PubMed  Google Scholar 

  68. Meinild AK, Loo DD, Pajor AM, Zeuthen T, Wright EM (2000) Water transport by the renal Na(+)-dicarboxylate cotransporter. Am J Physiol Ren Physiol 278(5):F777–F783

    CAS  Google Scholar 

  69. Pajor AM, Sun NN (2010) Single nucleotide polymorphisms in the human Na+−dicarboxylate cotransporter affect transport activity and protein expression. Am J Physiol Ren Physiol 299(4):F704–F711

    Article  CAS  Google Scholar 

  70. Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–256

    Article  CAS  PubMed  Google Scholar 

  71. Fischbarg J, Kuang KY, Hirsch J, Lecuona S, Rogozinski L, Silverstein SC, Loike J (1989) Evidence that the glucose transporter serves as a water channel in J774 macrophages. Proc Natl Acad Sci U S A 86(21):8397–8401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischbarg J, Kuang KY, Vera JC, Arant S, Silverstein SC, Loike J, Rosen OM (1990) Glucose transporters serve as water channels. Proc Natl Acad Sci U S A 87(8):3244–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dempster JA, van Hoek AN, de Jong MD, van Os CH (1991) Glucose transporters do not serve as water channels in renal and intestinal epithelia. Pflugers Arch 419(3–4):249–255

    Article  CAS  PubMed  Google Scholar 

  74. Zeuthen T, Zeuthen E, Macaulay N (2007) Water transport by GLUT2 expressed in Xenopus laevis oocytes. J Physiol 579(Pt 2):345–361

    Article  CAS  PubMed  Google Scholar 

  75. Salas-Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J (2004) Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J 87(5):2990–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeuthen T, Stein WD (1994) Cotransport of salt and water in membrane proteins: membrane proteins as osmotic engines. J Membr Biol 137(3):179–195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Yang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Huang, B., Wang, H., Yang, B. (2017). Water Transport Mediated by Other Membrane Proteins. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 969. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1057-0_17

Download citation

Publish with us

Policies and ethics