Advertisement

Aquaporins pp 199-212 | Cite as

Aquaporins in Fetal Development

  • Nora Martínez
  • Alicia E. DamianoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 969)

Abstract

Water homeostasis during fetal development is of crucial physiologic importance. The successful formation and development of the placenta is critical to maintain normal fetal growth and homeostasis. The expression of several aquaporins (AQPs ) was found from blastocyst stages to term placenta and fetal membranes. Therefore, AQPs are proposed to play important roles in normal pregnancy, fetal growth, and homeostasis of amniotic fluid volume, and water handling in other organs. However, the functional importance of AQPs in fetal development remains to be elucidated.

Keywords

Water Water channel Aquaporin Fetal development 

References

  1. 1.
    Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114(5–6):397–407CrossRefPubMedGoogle Scholar
  2. 2.
    Golos TG, Giakoumopoulos M, Gerami-Naini B (2013) Review: trophoblast differentiation from human embryonic stem cells. Placenta 34(Suppl):S56–S61CrossRefPubMedGoogle Scholar
  3. 3.
    Pfeffer PL, Pearton D (2012) Trophoblast development. Reproduction 143(3):231–246CrossRefPubMedGoogle Scholar
  4. 4.
    Grosser O (1909) Vergleichende Anatomie und Entwicklungs- geschichte der Eih&ute und der Placenta. Braumuller, ViennaGoogle Scholar
  5. 5.
    Stulc J (1997) Placental transfer of inorganic ions and water. Physiol Rev 77(3):805–836PubMedGoogle Scholar
  6. 6.
    Jansson T, Powell TL, Illsley NP (1999) Gestational development of water and non-electrolyte permeability of human syncytiotrophoblast plasma membranes. Placenta 20:155–160CrossRefPubMedGoogle Scholar
  7. 7.
    Edwards D, Jones CJ, Sibley CP, Nelson DM (1993) Paracellular permeability pathways in the human placenta: a quantitative and morphological study of maternal fetal transfer of horseradish peroxidase. Placenta 14(1):63–73CrossRefPubMedGoogle Scholar
  8. 8.
    Jansson T, Illsley NP (1993) Osmotic water permeabilities of human placental microvillous and basal membranes. J Membr Biol 32:147–155Google Scholar
  9. 9.
    Jansson T, Powell TL, Illsley NP (1993) Non-electrolyte solute permeabilities of human placental microvillous and basal membranes. J Physiol 468:261–274CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Damiano AE, Zotta E, Goldstein J, Reisin I, Ibarra C (2001) Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22:776–781CrossRefPubMedGoogle Scholar
  11. 11.
    Damiano AE, Zotta E, Ibarra C (2006) Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. Placenta 27:1073–1081CrossRefPubMedGoogle Scholar
  12. 12.
    Noda Y, Sasaki S (2008) Actin-binding channels. Prog Brain Res 170:551–557CrossRefPubMedGoogle Scholar
  13. 13.
    Damiano AE (2011) Review: water channel proteins in the human placenta and fetal membranes. Placenta 32(Suppl 2):S207–S211CrossRefPubMedGoogle Scholar
  14. 14.
    Watson AJ, Barcroft LC (2001) Regulation of blastocyst formation. Front Biosci 6:D708–D730CrossRefPubMedGoogle Scholar
  15. 15.
    Barcroft LC, Offenberg H, Thomsen P, Watson AJ (2003) Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev Biol 256(2):342–354CrossRefPubMedGoogle Scholar
  16. 16.
    Xiong Y, Tan YJ, Xiong YM, Huang YT, Hu XL, Lu YC, Ye YH, Wang TT, Zhang D, Jin F, Huang HF, Sheng JZ (2013) Expression of aquaporins in human embryos and potential role of AQP3 and AQP7 in preimplantation mouse embryo development. Cell Physiol Biochem 31(4–5):649–658CrossRefPubMedGoogle Scholar
  17. 17.
    Prat C, Blanchon L, Borel V, Gallot D, Herbet A, Bouvier D, Marceau G, Sapin V (2012) Ontogeny of aquaporins in human fetal membranes. Biol Reprod 86(2):48CrossRefPubMedGoogle Scholar
  18. 18.
    Escobar J, Gormaz M, Arduini A, Gosens K, Martinez A, Perales A, Escrig R, Tormos E, Roselló M, Orellana C, Vento M (2012) Expression of aquaporins early in human pregnancy. Early Hum Dev 88(8):589–594CrossRefPubMedGoogle Scholar
  19. 19.
    Park JW, Cheon YP (2015) Temporal aquaporin 11 expression and localization during preimplantation embryo development. Dev Reprod 19(1):53–60CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bednar AD, Beardall MK, Brace RA, Cheung CY (2015) Differential expression and regional distribution of aquaporins in amnion of normal and gestational diabetic pregnancies. Physiol Rep 3(3):pii: e12320Google Scholar
  21. 21.
    Mann SE, Ricke EA, Yang BA, Verkman AS, Taylor RN (2002) Expression and localization of aquaporin 1 and 3 in human fetal membranes. Am J Obstet Gynecol 187(4):902–907CrossRefPubMedGoogle Scholar
  22. 22.
    Wang S, Kallichanda N, Song W, Ramirez BA, Ross MG (2001) Expression of aquaporin-8 in human placenta and chorioamniotic membranes: evidence of molecular mechanism for intramembranous amniotic fluid resorption. Am J Obstet Gynecol 185:1226–1231CrossRefPubMedGoogle Scholar
  23. 23.
    Wang S, Chen J, Beall M, Zhou W, Ross MG (2004) Expression of aquaporin 9 in human chorioamniotic membranes and placenta. Am J Obstet Gynecol 191:2160–2167CrossRefPubMedGoogle Scholar
  24. 24.
    De Falco M, Cobellis L, Torella M, Acone G, Varano L, Sellitti A, Ragucci A, Coppola G, Cassandro R, Laforgia V, Varano L, De Luca A (2007) Down-regulation of aquaporin 4 in human placenta throughout pregnancy. In Vivo 21:813–817PubMedGoogle Scholar
  25. 25.
    Liu H, Wintour ER (2005) Aquaporins in development – A review. Reprod Biol Endocrinol 3:18CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Baum M, Quigley R, Satlin L (2003) Maturational changes in renal tubular transport. Curr Opin Nephrol Hypertens 12:521–526CrossRefPubMedGoogle Scholar
  27. 27.
    Devuyst O, Burrow CR, Smith BL, Agre P, Knepper MA, Wilson PD (1996) Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Phys 271:F169–F183Google Scholar
  28. 28.
    Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, Fujinaka H, Marumo F, Kihara I (1997) Expression of AQP family in rat kidneys during development and maturation. Am J Phys 272:F198–F204Google Scholar
  29. 29.
    Baum MA, Ruddy MK, Hosselet CA, Harris HW (1998) The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 43:783–790CrossRefPubMedGoogle Scholar
  30. 30.
    Butkus A, Earnest L, Jeyaseelan K, Moritz K, Johnston H, Tenis N, Wintour EM (1999) Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr Nephrol 13:379–390CrossRefPubMedGoogle Scholar
  31. 31.
    Bondy C, Chin E, Smith BL, Preston GM, Agre P (1993) Developmental gene expression and tissue distribution of the CHIP28 water channel protein. Proc Natl Acad Sci U S A 90:4500–4504CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yasui M, Marples D, Belusa R, Eklof AC, Celsi G, Nielsen S, Aperia A (1996) Development of urinary concentrating capacity: role of aquaporin-2. Am J Phys 271:F461–F468Google Scholar
  33. 33.
    Butkus A, Alcorn D, Earnest L, Moritz K, Giles M, Wintour EM (1997) Expression of aquaporin-1 (AQP1) in the adult and developing sheep kidney. Biol Cell 89:313–320CrossRefPubMedGoogle Scholar
  34. 34.
    Wintour EM, Liu H, Dodic M, Moritz K (2004) Differential renal and cardiac gene expression in ovine fetuses programmed to become hypertersive adults by early glucocorticoid treatment. In: Proceedings of the 12th International Congress of Endocrinolgy, pp 501–505Google Scholar
  35. 35.
    Harding R, Hooper SB (1999) Lung development and maturation. In: Rodeck CH, Whittle MJ (eds) Fetal medicine: basic science and clinical practice. Churchill Livingstone, London, pp 181–196Google Scholar
  36. 36.
    Liu H, Hooper SB, Armugam A, Dawson N, Ferraro T, Jeyaseelan K, Thiel A, Koukoulas I, Wintour EM (2003) Aquaporin gene expression and regulation in the ovine fetal lung. J Physiol 551:503–514CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu C, Morrisey EE, Whitsett JA (2002) GATA-6 is required for maturation of the lung in late gestation. Am J Physiol Lung Cell Mol Physiol 283:L468–L475CrossRefPubMedGoogle Scholar
  38. 38.
    Torday JS, Rehan VK (2003) Testing for fetal lung maturation: a biochemical “window” to the developing fetus. Clin Lab Med 23:361–383CrossRefPubMedGoogle Scholar
  39. 39.
    King LS, Nielsen S, Agre P (1997) Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am J Phys 273:C1541–C1548Google Scholar
  40. 40.
    Yasui M, Serlachius E, Lofgren M, Belusa R, Nielsen S, Aperia A (1997) Perinatal changes in expression of aquaporin-4 and other water and ion transporters in rat lung. J Physiol 505:3–11CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Agren J, Sjors G, Sedin G (1998) Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr 87:1185–1190CrossRefPubMedGoogle Scholar
  42. 42.
    Agren J, Zelenin S, Hakansson M, Eklof AC, Aperia A, Nejsum LN, Nielsen S, Sedin G (2003) Transepidermal water loss in developing rats: role of aquaporins in the immature skin. Pediatr Res 53:558–565CrossRefPubMedGoogle Scholar
  43. 43.
    Wen H, Nagelhus EA, Amiry-Moghaddam M, Agre P, Ottersen OP, Nielsen S (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci 11:935–945CrossRefPubMedGoogle Scholar
  44. 44.
    Nico B, Frigeri A, Nicchia GP, Quondamatteo F, Herken R, Errede M, Ribatti D, Svelto M, Roncali L (2001) Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci 114:1297–1307PubMedGoogle Scholar
  45. 45.
    Gömöri E, Pál J, Abrahám H, Vajda Z, Sulyok E, Seress L, Dóczi T (2006) Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Dev Neurosci 24(5):295–305CrossRefPubMedGoogle Scholar
  46. 46.
    Brace RA (1997) Physiology of amniotic fluid volume regulation. Clin Obstet Gynecol 40(2):280–289CrossRefPubMedGoogle Scholar
  47. 47.
    Mann SE, Nijland MJ, Ross MG (1996) Mathematic modeling of human amniotic fluid dynamics. Am J Obstet Gynecol 175:937–944CrossRefPubMedGoogle Scholar
  48. 48.
    Gillibrand PN (1969) Changes in the electrolytes, urea and osmolality of the amniotic fluid with advancing pregnancy. J Obstet Gynaecol Br Commonw 76(10):898–905CrossRefPubMedGoogle Scholar
  49. 49.
    Eis AW, Mitchell MD, Myatt L (1992) Endothelin transfer and endothelin effects on water transfer in human fetal membranes. Obstet Gynecol 79:411–415CrossRefPubMedGoogle Scholar
  50. 50.
    Liu H, Zheng Z, Wintour EM (2008) Aquaporins and fetal fluid balance. Placenta 29:840–847CrossRefPubMedGoogle Scholar
  51. 51.
    Beall MH, van den Wijngaard JP, van Gemert MJ, Ross MG (2007) Regulation of amniotic fluid volume. Placenta 28(8–9):824–832CrossRefPubMedGoogle Scholar
  52. 52.
    Harman CR (2008) Amniotic fluid abnormalities. Semin Perinatol 32(4):288–294CrossRefPubMedGoogle Scholar
  53. 53.
    Mann SE, Dvorak N, Gilbert H, Taylor RN (2006) Steady-state levels of aquaporin 1 mRNA expression are increased in idiopathic polyhydramnios. Am J Obstet Gynecol 194:884–887CrossRefPubMedGoogle Scholar
  54. 54.
    Zhu X, Jiang S, Hu Y, Zheng X, Zou S, Wang Y, Zhu X (2010) The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev 86:657–663CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu XQ, Jiang SS, Zhu XJ, Zou SW, Wang YH, Hu YC (2009) Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta 30:670–676CrossRefPubMedGoogle Scholar
  56. 56.
    Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273(38):24737–24743CrossRefPubMedGoogle Scholar
  57. 57.
    Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3–28CrossRefGoogle Scholar
  58. 58.
    Roberts JM, Hubel CA (2009) The two stage model of preeclampsia: variations on the theme. Placenta 30(Suppl A):S32–S37CrossRefPubMedGoogle Scholar
  59. 59.
    Szpilbarg N, Castro-Parodi M, Reppetti J, Repetto M, Maskin B, Martinez N, Damiano AE (2016) Placental programmed cell death: insights into the role of aquaporins. Mol Hum Reprod 22(1):46–56CrossRefPubMedGoogle Scholar
  60. 60.
    Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232CrossRefPubMedGoogle Scholar
  61. 61.
    Jablonski E, Webb A, Hughes FM Jr (2004) Water movement during apoptosis: a role for aquaporins in the apoptotic volume decrease (AVD). Adv Exp Med Biol 559:179–188CrossRefPubMedGoogle Scholar
  62. 62.
    Jablonski E, Webb A, McConnell N, Riley MC, Hughes FM Jr (2004) Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 286:C975–C985CrossRefPubMedGoogle Scholar
  63. 63.
    Chen JM, Sepramaniam S, Armugam A, Shyan Choy M, Manikandan J, Melendez AJ, Jeyaseelan K, Sang CN (2008) Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 6:102–116CrossRefGoogle Scholar
  64. 64.
    Sharp AN, Heazell AE, Crocker IP, Mor G (2010) Placental apoptosis in health and disease. Am J Reprod Immunol 64(3):159–169CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Smith SC, Baker PN (1999) Placental apoptosis is increased in post-term pregnancies. Br J Obstet Gynaecol 106:861–862CrossRefPubMedGoogle Scholar
  66. 66.
    Hung TH, Skepper JN, Charnock-Jones DS, Burton GJ (2002) Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res 90(12):1274–1281CrossRefPubMedGoogle Scholar
  67. 67.
    Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G (2014) Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 397(1–2):78–92CrossRefPubMedGoogle Scholar
  68. 68.
    Badaut J, Regli L (2004) Distribution and possible roles of aquaporin 9 in the brain. Neuroscience 129(4):971–981CrossRefPubMedGoogle Scholar
  69. 69.
    Miki A, Kanamori A, Negi A, Naka M, Nakamura M (2013) Loss of aquaporin 9 expression adversely affects the survival of retinal ganglion cells. Am J Pathol 182(5):1727–1739CrossRefPubMedGoogle Scholar
  70. 70.
    Akashi A, Miki A, Kanamori A, Nakamura M (2015) Aquaporin 9 expression is required for l-lactate to maintain retinal neuronal survival. Neurosci Lett 589:185–190CrossRefPubMedGoogle Scholar
  71. 71.
    Wang S, Amidi F, Beall M, Gui L, Ross MG (2006) Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture. J Soc Gynecol Investig 13:181–185CrossRefPubMedGoogle Scholar
  72. 72.
    Wang S, Chen J, Au KT, Ross MG (2003) Expression of aquaporin 8 and its upregulation by cyclic adenosine monophosphate in human WISH cells. Am J Obstet Gynecol 188:997–1001CrossRefPubMedGoogle Scholar
  73. 73.
    Wang S, Amidi F, Yin S, Beall M, Ross MG (2007) Cyclic adenosine monophosphate regulation of aquaporin gene expression in human amnion epithelia. Reprod Sci 14(3):234–240CrossRefGoogle Scholar
  74. 74.
    Qi H, Li L, Zong W, Hyer BJ, Huang J (2009) Expression of aquaporin 8 is diversely regulated by osmotic stress in amnion epithelial cells. J Obstet Gynaecol Res 35(6):1019–1025CrossRefPubMedGoogle Scholar
  75. 75.
    Belkacemi L, Beall MH, Magee TR, Pourtemour M, Ross MG (2008) AQP1 gene expression is upregulated by arginine vasopressin and cyclic AMP agonists in trophoblast cells. Life Sci 82:1272–1280CrossRefPubMedGoogle Scholar
  76. 76.
    Prat C, Bouvier D, Comptour A, Marceau G, Belville C, Clairefond G, Blanc P, Gallot D, Blanchon L, Sapin V (2015) All-trans-retinoic acid regulates aquaporin-3 expression and related cellular membrane permeability in the human amniotic environment. Placenta 36(8):881–887CrossRefPubMedGoogle Scholar
  77. 77.
    Bouvier D, Rouzaire M, Marceau G, Prat C, Pereira B, Lemarié R, Deruelle P, Fajardy I, Gallot D, Blanchon L, Vambergue A, Sapin V (2015) Aquaporins and fetal membranes from diabetic parturient women: expression abnormalities and regulation by insulin. J Clin Endocrinol Metab 100(10):E1270–E1279CrossRefPubMedGoogle Scholar
  78. 78.
    Marino GI, Castro-Parodi M, Dietrich V, Damiano AE (2010) High levels of hCG correlate with increased AQP9 expression in explants from human preeclamptic placenta. Reprod Sci 17:444–453CrossRefPubMedGoogle Scholar
  79. 79.
    Castro Parodi M, Farina M, Dietrich V, Abán C, Szpilbarg N, Zotta E, Damiano AE (2011 Dec) Evidence for insulin-mediated control of AQP9 expression in human placenta. Placenta 32(12):1050–1056CrossRefPubMedGoogle Scholar
  80. 80.
    Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S (2003) Agre P Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100(5):2945–2950CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zelenina M (2010) Regulation of brain aquaporins. Neurochem Int 57(4):468–488CrossRefPubMedGoogle Scholar
  82. 82.
    Scioscia M, Gumaa K, Kunjara S, Paine MA, Selvaggi LE, Rodeck CH, Rademacher TW (2006) Insulin resistance in human preeclamptic placenta is mediated by serine phosphorylation of insulin receptor substrate-1 and -2. J Clin Endocrinol Metab 91(2):709–717CrossRefPubMedGoogle Scholar
  83. 83.
    Kanety H, Feinstein R, Papai MZ, Hemi R, Karasik M (1995) Tumor necrosis factor a induced phosphorylation of insulin receptor substrate-1 (IRS-1). J Biol Chem 270(40):23780–23784CrossRefPubMedGoogle Scholar
  84. 84.
    James JL, Stone PR, Chamley LW (2006) The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update 12:137–144CrossRefPubMedGoogle Scholar
  85. 85.
    Patel J, Landers K, Mortimer RH, Richard K (2010) Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta 2010(31):951–957CrossRefGoogle Scholar
  86. 86.
    Castro-Parodi M, Szpilbarg N, Dietrich V, Sordelli M, Reca A, Abán C, Maskin B, Farina MG, Damiano AE (2013) Oxygen tension modulates AQP9 expression in human placenta. Placenta 34(8):690–698CrossRefPubMedGoogle Scholar
  87. 87.
    Wenger RH, Gassmann M (1997) Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 378(7):609–616PubMedGoogle Scholar
  88. 88.
    Hu J, Discher DJ, Bishopric NH, Webster KA (1998) Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem Biophys Res Commun 245(3):894–899CrossRefPubMedGoogle Scholar
  89. 89.
    Tazuke SI, Mazure NM, Sugawara J, Carland G, Faessen GH, Suen LF, Irwin JC, Powell DR, Giaccia AJ, Giudice LC (1998) Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc Natl Acad Sci U S A 95(17):10188–10193CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Korkes HA, Sass N, Moron AF, Câmara NO, Bonetti T, Cerdeira AS, Da Silva ID, De Oliveira L (2014) Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. PLoS One 9(10):e110747CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Baig S, Lim JY, Fernandis AZ, Wenk MR, Kale A et al (2013) Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 34:436–442CrossRefPubMedGoogle Scholar
  92. 92.
    Kunzelmann K (2001) CFTR: interacting with everything? News Physiol Sci 16:167–170PubMedGoogle Scholar
  93. 93.
    Cheung KH, Leung CT, Leung GPH, Wong PYD (2003) Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Biol Reprod 68:1505–1510CrossRefPubMedGoogle Scholar
  94. 94.
    Castro-Parodi M, Levi L, Dietrich V, Zotta E, Damiano AE (2009) CFTR may modulate AQP9 functionality in preeclamptic placentas. Placenta 30:642–648CrossRefPubMedGoogle Scholar
  95. 95.
    Sibley CP, Glazier JD, Greenwood SL, Lacey H, Mynett K, Speake P, Jansson T, Johansson M, Powell TL et al (2002) Placenta 23(Suppl A):S39–S46CrossRefPubMedGoogle Scholar
  96. 96.
    Speake PF, Mynett KJ, Glazier JD, Greenwood SL, Sibley CP (2005) Activity and expression of Na+/H+ exchanger isoforms in the syncytiotrophoblast of the human placenta. Pflugers Arch 450(2):123–130CrossRefPubMedGoogle Scholar
  97. 97.
    Grassl SM (1989) Cl/HCO3 exchange in human placental brush border membrane vesicles. J Biol Chem 264:11103–11106PubMedGoogle Scholar
  98. 98.
    Lacey HA, Nolan T, Greenwood SL, Glazier JD, Sibley CP (2005) Gestational profile of Na+/H+ exchanger and Cl−/HCO3- anion exchanger mRNA expression in placenta using real-time QPCR. Placenta 26(1):93–98CrossRefPubMedGoogle Scholar
  99. 99.
    Zeuthen T, Klaerke DA (1999) Transport of water and glycerol in aquaporin-3 is gated by H+. J Biol Chem 274(31):21631–21636CrossRefPubMedGoogle Scholar
  100. 100.
    Morishima T, Aoyama M, Iida Y, Yamamoto N, Hirate H, Arima H, Fujita Y, Sasano H, Tsuda T, Katsuya H, Asai K, Sobue K (2008) Lactic acid increases aquaporin-4 expression on the cell membrane of cultured rat astrocytes. Neurosci Res 61(1):18–26CrossRefPubMedGoogle Scholar
  101. 101.
    Dietrich V, Damiano AE (2015) Activity of Na(+)/H(+) exchangers alters aquaporin-mediated water transport in human placenta. Placenta 36(12):1487–1489CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)- CONICET- Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations