Advertisement

Aquaporins pp 193-198 | Cite as

Aquaporins in the Eye

  • Thuy Linh TranEmail author
  • Steffen Hamann
  • Steffen Heegaard
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 969)

Abstract

The major part of the eye consists of water. Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary body-, lens- and retinal metabolism, while maintaining transparency in the optical compartments. Transport across the corneal epithelium and endothelium maintains the corneal transparency. Also, aqueous humour is continuously secreted by the epithelia of the ciliary body and maintains the intraocular pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins (AQPs ) take part in the water transport throughout the eye.

Keywords

Water Water channel Aquaporin Eye 

Abbreviations

AQP

aquaporin

IOP

intraocular pressure

kDa

kilodalton

Kir4.1

inward rectifying potassium channel

MIP

Major intrinsic protein

mRNA

messenger ribonucleic acid

RGC

retinal ganglion cell

RPE

retinal pigment epithelium

RT-PCR

reverse transcriptase-polymerase chain reaction

TM

trabecular meshwork

References

  1. 1.
    Hamann S (2002) Molecular mechanisms of water transport in the eye. Int Rev Cytol 215:395–431CrossRefPubMedGoogle Scholar
  2. 2.
    Verkman AS, Ruiz-Ederra J, Levin MH (2008) Functions of aquaporins in the eye. Prog Retin Eye Res 27(4):420–433CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gabelt B, Kaufman PL (2003) Aqueous humor hydrodynamics. In: Kaufman P, ALm A (eds) Adler’s physiology of the eye. Mosby, St. Louis, pp 236–289Google Scholar
  4. 4.
    Goodyear MJ, Crewther SG, Junghans BM (2009) A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci 26(2):159–165CrossRefPubMedGoogle Scholar
  5. 5.
    Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P et al (1998) Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 274(5 Pt 1):C1332–C1345PubMedGoogle Scholar
  6. 6.
    Thiagarajah JR, Verkman AS (2002) Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem 277(21):19139–19144CrossRefPubMedGoogle Scholar
  7. 7.
    Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S (2003) Transparency, swelling and scarring in the corneal stroma. Eye (Lond) 17(8):927–936CrossRefGoogle Scholar
  8. 8.
    Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95(1):2–7CrossRefPubMedGoogle Scholar
  9. 9.
    Wen Q, Diecke FP, Iserovich P, Kuang K, Sparrow J, Fischbarg J (2001) Immunocytochemical localization of aquaporin-1 in bovine corneal endothelial cells and keratocytes. Exp Biol Med (Maywood) 226(5):463–467Google Scholar
  10. 10.
    Levin MH, Verkman AS (2006) Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci 47(10):4365–4372CrossRefPubMedGoogle Scholar
  11. 11.
    Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 86(2):221–231CrossRefGoogle Scholar
  12. 12.
    Ruiz-Ederra J, Verkman AS (2009) Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models. Exp Eye Res 89(2):159–165CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stamer WD, Peppel K, O’Donnell ME, Roberts BC, Wu F, Epstein DL (2001) Expression of aquaporin-1 in human trabecular meshwork cells: role in resting cell volume. Invest Ophthalmol Vis Sci 42(8):1803–1811PubMedGoogle Scholar
  14. 14.
    Baetz NW, Hoffman EA, Yool AJ, Stamer WD (2009) Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Exp Eye Res 89(1):95–100CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yamaguchi Y, Watanabe T, Hirakata A, Hida T (2006) Localization and ontogeny of aquaporin-1 and -4 expression in iris and ciliary epithelial cells in rats. Cell Tissue Res 325(1):101–109CrossRefPubMedGoogle Scholar
  16. 16.
    Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+-K+-2Cl cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588(Pt 21):4089–4101CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chepelinsky AB (2009) Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handb Exp Pharmacol 190:265–297CrossRefGoogle Scholar
  18. 18.
    Varadaraj K, Kumari S, Shiels A, Mathias RT (2005) Regulation of aquaporin water permeability in the lens. Invest Ophthalmol Vis Sci 46(4):1393–1402CrossRefPubMedGoogle Scholar
  19. 19.
    Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424CrossRefPubMedGoogle Scholar
  20. 20.
    Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234(2):57–73CrossRefPubMedGoogle Scholar
  21. 21.
    Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J et al (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54(3–4):143–160CrossRefPubMedGoogle Scholar
  22. 22.
    Hamann S, Kiilgaard JF, la Cour M, Prause JU, Zeuthen T (2003) Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 76(4):493–504CrossRefPubMedGoogle Scholar
  23. 23.
    Zayit-Soudry S, Moroz I, Loewenstein A (2007) Retinal pigment epithelial detachment. Surv Ophthalmol 52(3):227–243CrossRefPubMedGoogle Scholar
  24. 24.
    Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44(6):2803–2808CrossRefPubMedGoogle Scholar
  25. 25.
    Dibas A, Yang MH, Bobich J, Yorio T (2007) Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line. Pharm Res 55(5):378–384CrossRefGoogle Scholar
  26. 26.
    Naka M, Kanamori A, Negi A, Nakamura M (2010) Reduced expression of aquaporin-9 in rat optic nerve head and retina following elevated intraocular pressure. Invest Ophthalmol Vis Sci 51(9):4618–4626CrossRefPubMedGoogle Scholar
  27. 27.
    Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22(4):367–378CrossRefPubMedGoogle Scholar
  28. 28.
    Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F et al (2011) Immunolocalization of aquaporins in rat brain. Anat Histol Embryol 40(4):299–306CrossRefPubMedGoogle Scholar
  29. 29.
    Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31(2):152–181 Epub 2011/12/14CrossRefPubMedGoogle Scholar
  30. 30.
    Tran TL, Bek T, Holm L, la Cour M, Nielsen S, Prause JU, Rojek A, Hamann S, Heegaard S (2013 Sep) Aquaporins 6–12 in the human eye. Acta Ophthalmol Scand 91(6):557–563CrossRefGoogle Scholar
  31. 31.
    Kenney MC, Atilano SR, Zorapapel N, Holguin B, Gaster RN, Ljubimov AV (2004) Altered expression of aquaporins in bullous keratopathy and Fuchs’ dystrophy corneas. J Histochem Cytochem 52(10):1341–1350 Epub 2004/09/24CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang D, Vetrivel L, Verkman AS (2002) Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. JGen Physiol 119(6):561–569Google Scholar
  33. 33.
    Mizokami J, Kanamori A, Negi A, Nakamura M (2011) A preliminary study of reduced expression of aquaporin-9 in the optic nerve of primate and human eyes with glaucoma. Curr Eye Res 36(11):1064–1067CrossRefPubMedGoogle Scholar
  34. 34.
    Fukuda M, Naka M, Mizokami J, Negi A, Nakamura M (2011) Diabetes induces expression of aquaporin-0 in the retinal nerve fibers of spontaneously diabetic Torii rats. Exp Eye Res 92(3):195–201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Thuy Linh Tran
    • 1
    Email author
  • Steffen Hamann
    • 1
  • Steffen Heegaard
    • 1
  1. 1.Department of Ophthalmology, Rigshospitalet – GlostrupUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations