Aquaporins pp 173-191 | Cite as

Aquaporins in the Skin

  • Ravi Patel
  • L. Kevin Heard
  • Xunsheng Chen
  • Wendy B. BollagEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 969)


The skin is the largest organ of the body, serving as an important barrier between the internal milieu and the external environment. The skin is also one of the first lines of defense against microbial infection and other hazards, and thus, the skin has important immune functions. This organ is composed of many cell types, including immune-active dendritic cells (epidermal Langerhans cells and dermal dendritic cells), connective tissue-generating dermal fibroblasts and pigment-producing melanocytes. Comprising the outer skin layer are the epidermal keratinocytes, the predominant cell of this layer, the epidermis, which provides both a mechanical barrier and a water-permeability barrier. Recent data suggest that aquaporins, a family of barrel-shaped proteins surrounding internal pores that allow the passage of water and, in some family members, small solutes such as glycerol, play critical roles in regulating various skin parameters. The involvement of different aquaporin family members in skin function is discussed.


Aquaporin Contact hypersensitivity Epidermis Glycerol Psoriasis Skin Skin cancer 





basal cell carcinoma








phosphoinositide 3-kinase


phospholipase D-2


peroxisome proliferator-activated receptor


palmoplantar keratoderma


squamous cell carcinoma



We would like to express our sincere appreciation for the talented Ms. Lynsey Ekema, MSMI, for preparation of Figs. 11.1 and 11.5. We also acknowledge the expert technical assistance of Ms. Purnima Merai for isolation and culture of primary cultures of mouse epidermal keratinocytes. WBB has been supported by a VA Research Career Scientist Award. The contents of this article do not represent the views of the Department of Veterans Affairs or the United States Government.


  1. 1.
    Marks JG Jr, Miller JJ (2013) Lookingbill and Marks’ principles of Dermatology, 5th edn. Saunders Elsevier, LondonGoogle Scholar
  2. 2.
    Atkinson SD, McGilligan VE, Liao H, Szeverenyi I, Smith FJ, Moore CB et al (2011) Development of allele-specific therapeutic siRNA for keratin 5 mutations in epidermolysis bullosa simplex. J Invest Dermatol 131(10):2079–2086PubMedCrossRefGoogle Scholar
  3. 3.
    Bikle DD, Pillai S (1993) Vitamin D, calcium and epidermal differentiation. Endocr Rev 14:3–19PubMedGoogle Scholar
  4. 4.
    Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Ren Physiol 278:F13–F28Google Scholar
  5. 5.
    Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327PubMedCrossRefGoogle Scholar
  6. 6.
    Boury-Jamot M, Sougrat R, Tailhardat M, Le Varlet B, Bonte F, Dumas M et al (1758) Expression and function of aquaporins in human skin: is aquaporin-3 just a glycerol transporter? Biochim Biophys Acta 2006:1034–1042Google Scholar
  7. 7.
    Hara-Chikuma M, Sugiyama Y, Kabashima K, Sohara E, Uchida S, Sasaki S et al (2012) Involvement of aquaporin-7 in the cutaneous primary immune response through modulation of antigen uptake and migration in dendritic cells. FASEB J 26(1):211–218PubMedCrossRefGoogle Scholar
  8. 8.
    Blaydon DC, Lind LK, Plagnol V, Linton KJ, Smith FJ, Wilson NJ et al (2013) Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am J Hum Genet 93(2):330–335PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Leitch V, Agre P, King LS (2001) Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc Natl Acad Sci U S A 98(5):2894–2898PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hara-Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med 86:221–231PubMedCrossRefGoogle Scholar
  11. 11.
    Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456(4):693–700PubMedCrossRefGoogle Scholar
  12. 12.
    Marchini G, Stabi B, Kankes K, Lonne-Rahm S, Ostergaard M, Nielsen S (2003) AQP1 and AQP3, psoriasin, and nitric oxide synthases 1-2 are inflammatory mediators in erythema toxicum neonatorum. Pediatr Dermatol 20:377–384PubMedCrossRefGoogle Scholar
  13. 13.
    Boury-Jamot M, Daraspe J, Bonte F, Perrier E, Schnebert S, Dumas M et al (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol 190:205–217CrossRefGoogle Scholar
  14. 14.
    Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107(36):15681–15686PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S et al (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209(10):1743–1752PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T et al (2015) Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat Commun 6:7454PubMedCrossRefGoogle Scholar
  17. 17.
    Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128:2145–2151PubMedCrossRefGoogle Scholar
  18. 18.
    Voss KE, Bollag RJ, Fussell N, By C, Sheehan DJ, Bollag WB (2011) Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders. Arch Dermatol Res 303:591–600PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Garcia N, Gondran C, Menon G, Mur L, Oberto G, Guerif Y et al (2011) Impact of AQP3 inducer treatment on cultured human keratinocytes, ex vivo human skin and volunteers. Int J Cosmet Sci 33(5):432–442PubMedCrossRefGoogle Scholar
  20. 20.
    Agren J, Zelenin S, Svensson LB, Nejsum LN, Nielsen S, Aperia A et al (2010) Antenatal corticosteroids and postnatal fluid restriction produce differential effects on AQP3 expression, water handling, and barrier function in perinatal rat epidermis. Dermatol Res Pract 2010:789729PubMedPubMedCentralGoogle Scholar
  21. 21.
    Jungersted JM, Bomholt J, Bajraktari N, Hansen JS, Klaerke DA, Pedersen PA et al (2013) In vivo studies of aquaporins 3 and 10 in human stratum corneum. Arch Dermatol Res 305(8):699–704PubMedCrossRefGoogle Scholar
  22. 22.
    Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3 deficient mice may account for impaired skin hydration, elasticity and barrier recovery. J Biol Chem 277:46616–46621PubMedCrossRefGoogle Scholar
  23. 23.
    Hara M, Verkman AS (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci U S A 100:7360–7365PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277:17147–17153PubMedCrossRefGoogle Scholar
  25. 25.
    Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB (2011) Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys 508:138–143PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Goldsmith LA (2003) Clinical snippets. J Invest Dermatol 120:ivCrossRefGoogle Scholar
  27. 27.
    Hara-Chikuma M, Verkman AS (2008) Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol 28:326–332PubMedCrossRefGoogle Scholar
  28. 28.
    Rapp SR, Feldman SR, Exum ML, Fleischer AB Jr, Reboussin DM (1999) Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol 41(3 Pt 1):401–407PubMedCrossRefGoogle Scholar
  29. 29.
    Stern RS, Nijsten T, Feldman SR, Margolis DJ, Rolstad T (2004) Psoriasis is common, carries a substantial burden even when not extensive, and is associated with widespread treatment dissatisfaction. J Invest Dermatol Symp Proc 9(2):136–139CrossRefGoogle Scholar
  30. 30.
    Ghoreschi K, Mrowietz U, Rocken M (2003) A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses. J Mol Med (Berlin) 81(8):471–480CrossRefGoogle Scholar
  31. 31.
    Helwa I, Gulotto M, Bollag WB (2013) Keratinocytes in psoriasis: key players in the disease process. In: Smith P, Johnson N (eds) Psoriasis types, triggers and treatment strategies. Nova Science Publishers, HauppaugeGoogle Scholar
  32. 32.
    Zenz R, Efer R, Kenner L, Florin L, Hummerich L, Mehic D et al (2005) Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437:369–375PubMedCrossRefGoogle Scholar
  33. 33.
    Roberson ED, Bowcock AM (2010) Psoriasis genetics: breaking the barrier. Trends Genet 26(9):415–423PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG (2013) The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol 34(4):174–181PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sabat R, Wolk K (2011) Research in practice: IL-22 and IL-20: significance for epithelial homeostasis and psoriasis pathogenesis. J Dtsch Dermatol Ges 9(7):518–523PubMedGoogle Scholar
  36. 36.
    Brotas AM, Cunha JM, Lago EH, Machado CC, Carneiro SC (2012) Tumor necrosis factor-alpha and the cytokine network in psoriasis. An Bras Dermatol 87(5):673–681 ; quiz 82-3PubMedCrossRefGoogle Scholar
  37. 37.
    Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129(6):1339–1350PubMedCrossRefGoogle Scholar
  38. 38.
    Patel U, Mark NM, Machler BC, Levine VJ (2011) Imiquimod 5% cream induced psoriasis: a case report, summary of the literature and mechanism. Br J Dermatol 164(3):670–672PubMedGoogle Scholar
  39. 39.
    Flutter B, Nestle FO (2013) TLRs to cytokines: mechanistic insights from the imiquimod mouse model of psoriasis. Eur J Immunol 43(12):3138–3146PubMedCrossRefGoogle Scholar
  40. 40.
    van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845PubMedCrossRefGoogle Scholar
  41. 41.
    Seleit I, Bakry OA, Al Sharaky D, Ragheb E (2015) Evaluation of aquaporin-3 role in nonmelanoma skin cancer: an immunohistochemical study. Ultrastruct Pathol 39(5):306–317PubMedCrossRefGoogle Scholar
  42. 42.
    Niu D, Kondo T, Nakazawa T, Yamane T, Mochizuki K, Kawasaki T et al (2012) Expression of aquaporin3 in human neoplastic tissues. Histopathology 61(4):543–551PubMedGoogle Scholar
  43. 43.
    Ishimoto S, Wada K, Usami Y, Tanaka N, Aikawa T, Okura M et al (2012) Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma. Int J Oncol 41(1):67–75PubMedGoogle Scholar
  44. 44.
    Ikuta S, Edamatsu H, Li M, Hu L, Kataoka T (2008) Crucial role of phospholipase C epsilon in skin inflammation induced by tumor-promoting phorbol ester. Cancer Res 68(1):64–72PubMedCrossRefGoogle Scholar
  45. 45.
    Bollag WB (2009) Protein kinase Calpha puts the hand cuffs on epidermal keratinocyte proliferation. J Invest Dermatol 129:2330–2332PubMedCrossRefGoogle Scholar
  46. 46.
    Nakahigashi K, Kabashima K, Ikoma A, Verkman AS, Miyachi Y, Hara-Chikuma M (2011) Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. J Invest Dermatol 131:865–873PubMedCrossRefGoogle Scholar
  47. 47.
    Hara-Chikuma M, Takahashi K, Chikuma S, Verkman AS, Miyachi Y (2009) The expression of differentiation markers in aquaporin-3 deficient epidermis. Arch Dermatol Res 301:245–252PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D (2001) Glycerol: a neglected variable in metabolic processes? BioEssays 23(6):534–542PubMedCrossRefGoogle Scholar
  49. 49.
    Xie D, Seremwe M, Edwards JG, Podolsky R, Bollag WB (2014) Distinct effects of different phosphatidylglycerol species on mouse keratinocyte proliferation. PLoS One 9(9):e107119PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bollag WB, Xie D, Zhong X, Zheng X (2007) A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: Production of a novel phosphatidylglycerol lipid signal. J Invest Dermatol 127:2823–2831PubMedCrossRefGoogle Scholar
  51. 51.
    Choudhary V, Olala LO, Qin H, Helwa I, Pan ZQ, Tsai YY et al (2014) Aquaporin-3 re-expression induces differentiation in a phospholipase D2-dependent manner in aquaporin-3-knockout mouse keratinocytes. J Invest Dermatol 135:499–507PubMedCrossRefGoogle Scholar
  52. 52.
    Jiang YJ, Kim P, Lu YF, Feingold KR (2011) PPARgamma activators stimulate aquaporin 3 expression in keratinocytes/epidermis. Exp Dermatol 20:595–599PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Guo L, Chen H, Li Y, Zhou Q, Sui Y (2013) An aquaporin 3-notch1 axis in keratinocyte differentiation and inflammation. PLoS One 8(11):e80179PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kim N-H, Lee A-Y (2010) Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J Invest Dermatol 130:2231–2239PubMedCrossRefGoogle Scholar
  55. 55.
    Calautti E, Li J, Saoncella S, Brissette JL, Goetinck PF (2005) Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J Biol Chem 2890:32856–32865CrossRefGoogle Scholar
  56. 56.
    Thrash BR, Menges CW, Pierce RH, McCance DJ (2006) AKT1 provides an essential survival signal required for differentiation and stratification of primary human keratinocytes. J Biol Chem 281:12155–12162PubMedCrossRefGoogle Scholar
  57. 57.
    Tu C-L, Chang W, Bikle D (2001) The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem 276:41079–41085PubMedCrossRefGoogle Scholar
  58. 58.
    Lee Y, Je YJ, Lee SS, Li ZJ, Choi DK, Kwon YB et al (2012) Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis. Ann Dermatol 24(2):168–174PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zheng X, Bollag WB (2003) Aquaporin 3 colocates with phospholipase D2 in caveolin-rich membrane microdomains and is regulated by keratinocyte differentiation. J Invest Dermatol 121:1487–1495PubMedCrossRefGoogle Scholar
  60. 60.
    Zheng X, Ray S, Bollag WB (1643) Modulation of phospholipase D-mediated phosphatidylglycerol formation by differentiating agents in primary mouse epidermal keratinocytes. Biochim Biophys Acta 2003:25–36Google Scholar
  61. 61.
    Yuspa SH, Kilkenny AE, Steinert PM, Roop DR (1989) Expression of murine epidermal differentiation markers is tightly regulated by restricted calcium concentrations in vitro. J Cell Biol 109:1207–1217PubMedCrossRefGoogle Scholar
  62. 62.
    Qin H, Bollag WB (2013) The caveolin-1 scaffolding domain peptide decreases phosphatidylglycerol levels and inhibits calcium-induced differentiation in mouse keratinocytes. PLoS One 8:e8o946Google Scholar
  63. 63.
    Zheng X, Bollag WB (2003) AngII induces transient phospholipase D activity in the H295R glomerulosa cell model. Mol Cell Endocrinol 203:113–122CrossRefGoogle Scholar
  64. 64.
    Hwang I, Jung SI, Hwang EC, Song SH, Lee HS, Kim SO et al (2012) Expression and localization of aquaporins in benign prostate hyperplasia and prostate cancer. Chonnam Med J 48(3):174–178PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sugiyama Y, Ota Y, Hara M, Inoue S (2001) Osmotic stress up-regulates aquaporin-3 expression in cultured human keratinocytes. Biochim Biophys Acta 1522:82–88PubMedCrossRefGoogle Scholar
  66. 66.
    Yasui H, Kubota M, Iguchi K, Usui S, Kiho T, Hirano K (2008) Membrane trafficking of aquaporin 3 induced by epinephrine. Biochem Biophys Res Commun 373(4):613–617PubMedCrossRefGoogle Scholar
  67. 67.
    Hendriks G, Koudijs M, van Balkom BWM, Oorschot V, Klumperman J, Deen PMT et al (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975–2983PubMedCrossRefGoogle Scholar
  68. 68.
    Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K et al (2001) Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet 10(17):1793–1805PubMedCrossRefGoogle Scholar
  69. 69.
    Swindell WR, Xing X, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE (2014) Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiol Genomics 46(15):533–546PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Olsson M, Broberg A, Jernas M, Carlsson L, Rudemo M, Suurküla M et al (2006) Increased expression of aquaporin 3 in atopic eczema. Allergy 61:1132–1137PubMedCrossRefGoogle Scholar
  71. 71.
    Ikarashi N, Ogiue N, Toyoda E, Kon R, Ishii M, Toda T et al (2012) Gypsum fibrosum and its major component CaSO4 increase cutaneous aquaporin-3 expression levels. J Ethnopharmacol 139(2):409–413PubMedCrossRefGoogle Scholar
  72. 72.
    Soler DC, Bai X, Ortega L, Pethukova T, Nedorost ST, Popkin DL et al (2015) The key role of aquaporin 3 and aquaporin 10 in the pathogenesis of pompholyx. Med Hypotheses 84(5):498–503PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu J, Man WY, Lv CZ, Song SP, Shi YJ, Elias PM et al (2010) Epidermal permeability barrier recovery is delayed in vitiligo-involved sites. Skin Pharmacol Physiol 23:193–200PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Seleit I, Bakry OA, El Rebey HS, El-Akabawy G, Hamza G (2017) Is aquaporin-3 a determinant factor of intrinsic and extrinsic aging? An immunohistochemical and morphometric study. Appl Immunohistochem Mol Morphol 25:49–57Google Scholar
  75. 75.
    Li J, Tang H, Hu X, Chen M, Xie H (2010) Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing. Australas J Dermatol 51(2):106–112PubMedCrossRefGoogle Scholar
  76. 76.
    Fore J (2006) A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manag 52(9):24–35 ; quiz 6–7Google Scholar
  77. 77.
    Sugimoto T, Huang L, Minematsu T, Yamamoto Y, Asada M, Nakagami G et al (2013) Impaired aquaporin 3 expression in reepithelialization of cutaneous wound healing in the diabetic rat. Biol Res Nurs 15:347–355PubMedCrossRefGoogle Scholar
  78. 78.
    Michaels J, Churgin SS, Blechman KM, Greives MR, Aarabi S, Galiano RD et al (2007) db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen 15(5):665–670PubMedCrossRefGoogle Scholar
  79. 79.
    Pacifico A, Leone G (2011) Evaluation of a skin protection cream for dry skin in patients undergoing narrow band UVB phototherapy for psoriasis vulgaris. G Ital Dermatol Venereol 146(3):179–183PubMedGoogle Scholar
  80. 80.
    Stenn KS (2001) Insights from the asebia mouse: a molecular sebaceous gland defect leading to cicatricial alopecia. J Cutan Pathol 28(9):445–447PubMedCrossRefGoogle Scholar
  81. 81.
    Fluhr JW, Mao-Qiang M, Brown BE, Wertz PW, Crumrine D, Sundberg JP et al (2003) Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J Invest Dermatol 120:728–737PubMedCrossRefGoogle Scholar
  82. 82.
    Choi EH, Man M-Q, Wang F, Zhang X, Brown BE, Feingold KE et al (2005) Is endogenous glycerol a determinant of stratum corneum hydration in humans? J Invest Dermatol 125:288–293PubMedCrossRefGoogle Scholar
  83. 83.
    Schrader A, Siefken W, Kueper T, Breitenbach U, Gatermann C, Sperling G et al (2012) Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol Physiol 25(4):192–199PubMedCrossRefGoogle Scholar
  84. 84.
    Verkman AS (2008) A cautionary note on cosmetics containing ingredients that increase aquaporin-3 expression. Exp Dermatol 17:871–872PubMedCrossRefGoogle Scholar
  85. 85.
    Cao C, Sun Y, Healey S, Bi Z, Hu G, Wan S et al (2006) EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration. Biochem J 400(2):225–234PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Xie H, Liu F, Liu L, Dan J, Luo Y, Yi Y et al (2013) Protective role of AQP3 in UVA-induced NHSFs apoptosis via Bcl2 up-regulation. Arch Dermatol Res 305(5):397–406PubMedCrossRefGoogle Scholar
  87. 87.
    Gao L, Gao Y, Li X, Howell P, Kumar R, Su X et al (2012) Aquaporins mediate the chemoresistance of human melanoma cells to arsenite. Mol Oncol 6(1):81–87PubMedCrossRefGoogle Scholar
  88. 88.
    Luo J, Liu X, Liu J, Jiang M, Luo M, Zhao J (2016) Activation of TGF-beta1 by AQP3-mediated H2O2 transport into fibroblasts of a bleomycin-induced mouse model of scleroderma. J Invest Dermatol 136:2372–2379Google Scholar
  89. 89.
    Bovell D (2015) The human eccrine sweat gland: structure, function and disorders. J Local Global Health Sci 5. Google Scholar
  90. 90.
    Zhang M, Zeng S, Zhang L, Li H, Chen L, Zhang X et al (2014) Localization of Na(+)-K(+)-ATPase alpha/beta, Na(+)-K(+)-2Cl-cotransporter 1 and aquaporin-5 in human eccrine sweat glands. Acta Histochem 116(8):1374–1381PubMedCrossRefGoogle Scholar
  91. 91.
    Inoue R, Sohara E, Rai T, Satoh T, Yokozeki H, Sasaki S et al (2013) Immunolocalization and translocation of aquaporin-5 water channel in sweat glands. J Dermatol Sci 70(1):26–33PubMedCrossRefGoogle Scholar
  92. 92.
    Nejsum LN, Kwon TH, Jensen UB, Fumagalli O, Frokaier J, Krane CM et al (2002) Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci U S A 99:511–516PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cao X, Yin J, Wang H, Zhao J, Zhang J, Dai L et al (2014) Mutation in AQP5, encoding aquaporin 5, causes palmoplantar keratoderma Bothnia type. J Invest Dermatol 134(1):284–287PubMedCrossRefGoogle Scholar
  94. 94.
    Kroigard AB, Hetland LE, Clemmensen O, Blaydon DC, Hertz JM, Bygum A (2016) The first Danish family reported with an AQP5 mutation presenting diffuse non-epidermolytic palmoplantar keratoderma of Bothnian type, hyperhidrosis and frequent Corynebacterium infections: a case report. BMC Dermatol 16(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Maeda N, Funahashi T, Shimomura I (2008) Metabolic impact of adipose and hepatic glycerol channels aquaporin 7 and aquaporin 9. Nat Clin Pract Endocrinol Metab 4(11):627–634PubMedGoogle Scholar
  96. 96.
    Nurjhan N, Consoli A, Gerich J (1992) Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J Clin Invest 89(1):169–175PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W et al (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A 102(31):10993–10998PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S et al (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 280(16):15493–15496PubMedCrossRefGoogle Scholar
  99. 99.
    Sugiyama Y, Yamazaki K, Kusaka-Kikushima A, Nakahigashi K, Hagiwara H, Miyachi Y (2014) Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytes. FEBS Open Bio 4:611–616PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Song X, Xu A, Pan W, Wallin B, Kivlin R, Lu S et al (2008) Nicotinamide attenuates aquaporin 3 overexpression induced by retinoic acid through inhibition of EGFR/ERK in cultured human keratinocytes. Int J Mol Med 22:229–236PubMedGoogle Scholar
  101. 101.
    Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M (2016) Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471(1):191–197PubMedCrossRefGoogle Scholar
  102. 102.
    Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A et al (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol 132(6):1561–1572PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Friedman AJ, von Grote EC, Meckfessel MH (2016) Urea: a clinically oriented overview from bench to bedside. J Drugs Dermatol 15(5):633–639PubMedGoogle Scholar
  104. 104.
    Moniaga CS, Watanabe S, Honda T, Nielsen S, Hara-Chikuma M (2015) Aquaporin-9-expressing neutrophils are required for the establishment of contact hypersensitivity. Sci Report 5:15319CrossRefGoogle Scholar
  105. 105.
    Kimball AB, Jacobson C, Weiss S, Vreeland MG, Wu Y (2005) The psychosocial burden of psoriasis. Am J Clin Dermatol 6(6):383–392PubMedCrossRefGoogle Scholar
  106. 106.
    Bailey LJ, Choudhary V, Merai P, Bollag WB (2014) Preparation of primary cultures of mouse epidermal keratinocytes and the measurement of phospholipase D activity. Methods Mol Biol 1195:111–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Ravi Patel
    • 1
    • 2
  • L. Kevin Heard
    • 1
    • 2
  • Xunsheng Chen
    • 1
    • 2
    • 3
  • Wendy B. Bollag
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of PhysiologyMedical College of Georgia at Augusta UniversityAugustaUSA
  2. 2.Department of Medicine (Dermatology)Medical College of Georgia at Augusta UniversityAugustaUSA
  3. 3.Charlie Norwood VA Medical CenterAugustaUSA

Personalised recommendations