Skip to main content

Flocking, Swarming, and Communicating

  • Chapter
  • First Online:
The Essential Tension

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

AS WE have seen, Durkheim and others attempted to explain of how groups of humans come together as a collective. One of the most beautiful innovations of twentieth century physics was the ability to analyze such behavior with statistical methods and computational models. This has enabled researchers to quantify the specific aspects of a group of individuals that change as the individuals coalesce into a crowd. For the first time, a quantitative step could be taken toward answering the question when does a group become a separate individual in its own right?

Lordy, I hope there are tapes.

James Comey

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rather ruefully, Reynolds pointed out that the computer scientist is not so lucky: computational modeling of flock behavior does indeed get significantly more difficult as the flock size is increased.

  2. 2.

    See Brush (1967) for a history of the early days of this field and the development of the iconic Ising model.

  3. 3.

    Vicsek et al. appear not to have been aware of the boids model at the time they submitted their 1995 paper. Toner and Tu (1995) noted that D. Rokhsar alerted them to Reynolds’s work. Following their citation, nearly all statistical physics studies of flocking cited Reynolds’s boids model as an important precursor.

  4. 4.

    Giardina (2008) provides an excellent review summarizing the results of these and many other contributions to the field.

  5. 5.

    Collective inhibition of locomotion is a process whereby cells, at least in vitro, change their direction of motion upon contact. It has some commonalities with the nematic collisions observed between microtubules (see below), and is impaired in malignant cells. See Mayor and Carmona-Fontaine (2010) for an overview and evidence for the phenomenon in vivo.

  6. 6.

    In a nematic phase, typically observed in systems such as liquid crystals, the constituents align parallel to each other, but do not form ordered layers. In bacteria, this has been referred to as a “bio-nematic” phase.

  7. 7.

    This difference in interaction type does not prevent the collective behavior of the actin filaments from being described as “nematic”, in the sense that they align but do not form ordered layers.

  8. 8.

    The ordered regions observed by Schaller et al. (2010) and Sumino et al. (2012) were in the same size range (up to 400 μm).

References

  • Aldana M, Dossetti V, Huepe C, Kenkre VM, Larralde H (2007) Phase transitions in systems of self-propelled agents and related network models. Phys Rev Lett 98:095702

    Article  ADS  Google Scholar 

  • Aldana M, Larralde H, Vazquez B (2009) On the emergence of collective order in swarming systems: a recent debate. Int J Mod Phys B 23:3661–3685

    Article  ADS  MATH  Google Scholar 

  • Baglietto G, Albano EV, Candia J (2012) Criticality and the onset of ordering in the standard Vicsek model. Interface Focus 2:708–714

    Article  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008a) Interaction ruling collective animal behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci U S A 105:1232–1237

    Article  ADS  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008b) Empirical investigation of starling flocks: a benchmark study in collective animal behavior. Anim Behav 76:201–215

    Article  Google Scholar 

  • Barberis L, Albano EV (2014) Evidence of a robust universality class in the critical behavior of self-propelled agents: metric versus topological interactions. Phys Rev E 89:012139

    Article  ADS  Google Scholar 

  • Barnsley M (1993) Fractals Everywhere. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Baskaran A, Marchetti MC (2009) Statistical mechanics and hydrodynamics of bacterial suspensions. Proc Natl Acad Sci U S A 106(37):15567–15572

    Article  ADS  Google Scholar 

  • Battersby S (2015) The cells that flock together. Proc Natl Acad Sci U S A 112(26):7883–7885

    Article  ADS  Google Scholar 

  • Bazazi S, Buhl J, Hale JJ, Anste ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18:735–739

    Article  Google Scholar 

  • Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transition between disordered and ordered foraging in Pharaoh’s ants. Proc Natl Acad Sci U S A 98:9703–9706

    Article  ADS  Google Scholar 

  • Benisty S, Ben-Jacob E, Ariel G, Be’er A (2015) Antibiotic-induced anomalous statistics of collective bacterial swarming. Phys Rev Lett 114(1):018105

    Article  ADS  Google Scholar 

  • Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, Walczak A (2012) Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci U S A 109(13):4786–4791

    Article  ADS  Google Scholar 

  • Biro D, Sumpter DJ, Meade J, Guilford T (2006) From compromise to leadership in pigeon homing. Curr Biol 16(21):2123–2128

    Article  Google Scholar 

  • Brugués J, Needleman D (2014) Physical basis of spindle self-organization. Proc Natl Acad Sci U S A 111(52):18496–18500

    Article  ADS  Google Scholar 

  • Brush SG (1967) History of the Lenz-Ising model. Rev Mod Phys 39(4):883–895

    Article  ADS  Google Scholar 

  • Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1402–1406

    Article  ADS  Google Scholar 

  • Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci U S A 107(8):3776–3781

    Article  ADS  Google Scholar 

  • Butt T, Mufti T, Humayun A, Rosenthal PB, Khan S, Khan S, Molloy JE (2010) Myosin motors drive long range alignment of actin filaments. J Biol Chem 285(7):4964–4974

    Article  Google Scholar 

  • Camperi M, Cavagna A, Giardina I, Parisi G, Silvestri E (2012) Spatially balanced topological interaction grants optimal cohesion in flocking models. Interface Focus 2:715–725

    Article  Google Scholar 

  • Cavagna A, Cimarelli A, Giardina I, Orlandi A, Parisi G, Procaccini A, Santagati R, Stefanini F (2008a) New statistical tools for analyzing the structure of animal groups. Math Biosci 214:32–37

    Article  MathSciNet  MATH  Google Scholar 

  • Cavagna A, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008b) The STARFLAG handbook on collective animal behavior. 1: empirical methods. Anim Behav 76:217–236

    Article  Google Scholar 

  • Cavagna A, Giardina I, Orlandi A, Parisi G, Procaccini A (2008c) The STARFLAG handbook on collective animal behavior. 2: three-dimensional analysis. Anim Behav 76:237–248

    Article  Google Scholar 

  • Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010) Scale-free correlations in starling flocks. Proc Natl Acad Sci U S A 107:11865–11870

    Article  ADS  Google Scholar 

  • Cavagna A, Duarte Queriós SM, Giardina I, Stefanini F, Viale M (2013) Diffusion of individual birds in starling flocks. Proc R Soc B 280(1756):20122484

    Article  Google Scholar 

  • Chang WK, Carmona-Fontaine C, Xavier JB (2013) Tumour-stromal interactions generate emergent persistence in collective cancer cell migration. Interface Focus 3(4):20130017

    Article  Google Scholar 

  • Chaté H, Ginelli F, Grégoire G (2007) Comment on “Phase transitions in systems of self-propelled agents and related network models”. Phys Rev Lett 99:229601

    Article  ADS  Google Scholar 

  • Chen X, Dong X, Be’er A, Swinney HL, Zhang HP (2012) Scale-invariant correlations in dynamic bacterial clusters. Phys Rev Lett 108(14):148101

    Article  ADS  Google Scholar 

  • Coburn L, Cerone L, Torney C, Couzin ID, Neufeld Z (2013) Tactile interactions lead to coherent motion and enhanced chemotaxis of migrating cells. Phys Biol 10(4):046002

    Article  ADS  Google Scholar 

  • Couzin ID (2009) Collective cognition in animal groups. Trends Cogn Sci 13(1):36–43

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  MathSciNet  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    Article  ADS  Google Scholar 

  • Czirók A, Stanley HE, Vicsek T (1997) Spontaneously ordered motion of self-propelled particles. J Phys A Math Gen 30:1375–1385

    Article  ADS  Google Scholar 

  • Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17(3):276–287

    Article  Google Scholar 

  • Deisboeck TS, Couzin ID (2009) Collective behavior in cancer cell populations. BioEssays 31(2):190–197

    Article  Google Scholar 

  • Deneubourg J-L, Aron S, Goss S, Pasteels J-M (1990) The self-organizing exploratory pattern of the Argentine ant. J Insect Behav 3:159–168

    Article  Google Scholar 

  • Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93(9):098103

    Article  ADS  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man [sic!] Cybern B 26(1):1–13

    Google Scholar 

  • Dussutour A, Fourcassie V, Helbing D, Deneubourg J-L (2004) Optimal traffic organization in ants under crowded conditions. Nature 428:70–73

    Google Scholar 

  • Dyer JRG, Ioannou CC, Morrell LJ, Croft DP, Couzin ID, Waters DA, Krause J (2008) Consensus decision making in human crowds. Anim Behav 75:461–470

    Article  Google Scholar 

  • Giardina I (2008) Collective behavior in animal groups: theoretical models and empirical studies. HFSP J 2(4):205–219

    Article  Google Scholar 

  • Ginelli F, Peruani F, Bär M, Chaté H (2010) Large-scale collective properties of self-propelled rods. Phys Rev Lett 104:184502

    Article  ADS  Google Scholar 

  • Grégoire G, Chaté H (2004) Onset of collective and cohesive motion. Phys Rev Lett 92(2):025702

    Article  ADS  Google Scholar 

  • Grégoire G, Chaté H, Tu Y (2003) Moving and staying together without a leader. Phys D 181:157–170

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    Article  Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    Article  ADS  Google Scholar 

  • Hemelrijk CK, Kunz H (2005) Density distribution and size sorting in fish schools: an individual-based model. Behav Ecol Sociobiol 16:178–187

    Article  Google Scholar 

  • Hussain S, Molloy JE, Khan SM (2013) Spatiotemporal dynamics of actomyosin networks. Biophys J 105(6):1456–1465

    Article  Google Scholar 

  • Kraikivski P, Lipowsky R, Kierfeld J (2006) Enhanced ordering of interacting filaments by molecular motors. Phys Rev Lett 96:258103

    Article  ADS  Google Scholar 

  • Lai S, Tremblay J, Déziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11(1):126–136

    Article  Google Scholar 

  • Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16(1):38–46

    Article  Google Scholar 

  • Mayor R, Carmona-Fontaine C (2010) Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 20(6):319–328

    Article  Google Scholar 

  • Ordemann A, Balázsi G, Caspari E, Moss F (2003) Daphnia swarms: from single agent dynamics to collective vortex formation. In: Bezrukov SM, Frauenfelder H, Moss F (eds) Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems. Proc. SPIE 5510:172–179

    Google Scholar 

  • Partridge BL (1982) The structure and function of fish schools. Sci Am 246:114–123

    Article  Google Scholar 

  • Partridge BL, Pitcher T, Cullen JM, Wilson J (1980) The three-dimensional structure of fish schools. Behav Ecol Sociobiol 6:277–288

    Article  Google Scholar 

  • Peterson GD (1993) Animal aggregation: experimental simulation using vision-based behavioural rules. In: Nadel L, Stein DL (eds) 1992 Lectures in Complex Systems. Addison-Wesley, Reading

    Google Scholar 

  • Pimentel JA, Aldana M, Huepe C, Larralde H (2008) Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems. Phys Rev E 77:061138

    Article  ADS  Google Scholar 

  • Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21(4):25–34

    Article  Google Scholar 

  • Romey WL (1996) Individual differences make a difference in the trajectories of simulated fish schools. Ecol Model 92:65–77

    Article  Google Scholar 

  • Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467(7311):73–77

    Article  ADS  Google Scholar 

  • Silverberg JL, Bierbaum M, Sethna JP, Cohen I (2013) Collective motion of humans in mosh and circle pits at heavy metal concerts. Phys Rev Lett 110:228701

    Article  ADS  Google Scholar 

  • Simha RA, Ramaswamy S (2002) Hydrodynamics fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 89(5):058101

    Article  ADS  MATH  Google Scholar 

  • Simpson SJ, Sword GA, Lorch PD, Couzin IA (2006) Cannibal crickets on a forced march for protein and salt. Proc Natl Acad Sci U S A 103(11):4152–4156

    Article  ADS  Google Scholar 

  • Still GK (2014) Introduction to Crowd Science. Taylor and Francis Group, CRC Press, Boca Raton

    Google Scholar 

  • Strefler J, Erdmann U, Schimansky-Geier L (2008) Swarming in three dimensions. Phys Rev E 78:031927

    Article  ADS  Google Scholar 

  • Strogatz SH (1994) Nonlinear Dynamics and Chaos with Applications to Physics and Engineering. Addison-Wesley, Reading

    Google Scholar 

  • Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483(7390):448–452

    Article  ADS  Google Scholar 

  • Szabó B, Szöllösi GJ, Gönci B, Jurányi ZS, Selmeczi D, Vicsek T (2006) Phase transition in the collective migration of tissue cells: experiment and model. Phys Rev E 74:061908

    Article  ADS  Google Scholar 

  • Toner J, Tu Y (1995) Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75(23):4326–4329

    Article  ADS  Google Scholar 

  • Toner J, Tu Y (1998) Flocks, herds and schools: a quantitative theory of flocking. Phys Rev E 58:4828–4858

    Article  ADS  MathSciNet  Google Scholar 

  • Toner J, Tu Y, Ramaswamy S (2005) Hydrodynamics and phases of flocks. Ann Phys 318:170–244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vicsek T (2012) Swarming microtubules. Nature 483(7390):411–412

    Article  ADS  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Schochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229

    Article  ADS  MathSciNet  Google Scholar 

  • Volfson D, Cookson S, Hasty J, Tsimring LS (2008) Biomechanical ordering of dense cell populations. Proc Natl Acad Sci U S A 105(40):15346–15351

    Article  ADS  Google Scholar 

  • Vollmer J, Vegh AG, Lange C, Eckhardt B (2006) Vortex formation by active agents as a model for Daphnia swarming. Phys Rev E 73:061924

    Article  ADS  Google Scholar 

  • Wioland H, Woodhouse FG, Dunkel J, Kessler JO, Goldstein RE (2013) Confinement stabilizes a bacterial suspension into a spiral vortex. Phys Rev Lett 110:268102

    Article  ADS  Google Scholar 

  • Yeomans JM (1992) Statistical Mechanics of Phase Transitions. Oxford University Press (Clarendon Press), Oxford

    Google Scholar 

  • Zhang HP, Be’er A, Florin EL, Swinney HL (2010) Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci U S A 107(31):13626–13630

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahar, S. (2018). Flocking, Swarming, and Communicating. In: The Essential Tension. The Frontiers Collection. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1054-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1054-9_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1052-5

  • Online ISBN: 978-94-024-1054-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics