Epigenetics and Its Role in Human Cancer

  • Utkarsh Raj
  • Pritish Kumar VaradwajEmail author
Part of the Translational Medicine Research book series (TRAMERE)


Cancer is often associated with heritable epigenetic changes, which are characterized by the change in gene expression profile without changing the underlying DNA sequence. The most prominent epigenetic modification is methylation of DNA, which to a large extent is connected to modifications of histone proteins. Epigenetic modifications resulting in a normal gene are reversible, thus endow functional flexibility and diversity to the genome, and these modifications can be cured with selective epigenetic target inhibitors. The role of epigenetics in human cancer has been vastly studied and reported in recent decade with emerging evidences about the significance of epigenetic alterations to comprehend various cellular mechanisms. The cellular mechanisms which are crucial for controlling the growth and progression were seen to be impaired by epigenetic changes, which result into development of various human cancer diseases. Although several targets for cancer epigenetics have been identified and annotated in recent past, the development of novel anticancer treatments for these targets is still in nascent stage. By recognizing the spectrum of cancer epigenetics, an array of new drug discoveries has been possible these days. In this chapter, we presented an overview of such epigenetic modifications which occurs and resulted into human cancer and the relationship between those epigenetic enzyme classes and cancer types, with a note on preclinical utilizations of inhibitors for the treatment of such cancer types. This chapter focuses on the practical understanding of human cancer epigenetics and its perspective use for drug designing.


Cancer epigenetics DNA methylation Histone modifications CpG methylation miRNAs 


  1. Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol. 2001;82(2):299–304.CrossRefPubMedGoogle Scholar
  2. Altucci L, Minucci S. Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer. 2009;45(7):1137–45.CrossRefPubMedGoogle Scholar
  3. Andreol F, Barbosa AJM, Daniele Parenti M, Rio AD. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des. 2013;19(4):578–613.CrossRefPubMedCentralGoogle Scholar
  4. Asadollahi R, CAC H, Zhong XY. Epigenetics of ovarian cancer: from the lab to the clinic. Gynecol Oncol. 2010;118(1):81–7.CrossRefPubMedGoogle Scholar
  5. Baylin SB. Epigenetics and cancer. Mol Basis Cancer. 2008:57–65.Google Scholar
  6. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011a;11(10):726–34.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011b;11:726–34.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CPE, Dijk CMV, Tollenaar RAEM, Berg DVD, Laird PW. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2012;44(1):40–6.CrossRefGoogle Scholar
  9. Bishton M, Kenealy M, Johnstone R, Rasheed W, Prince HM. Epigenetic targets in hematological malignancies: combination therapies with HDAC is and demethylating agents. Expert Rev Anticancer Ther. 2007;7(10):1439–49.CrossRefPubMedGoogle Scholar
  10. Bracker TU, Sommer A, Fichtner I, Faus H, Haendler B, Hess-Stumpp H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol. 2009;35(4):909–20.PubMedGoogle Scholar
  11. Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest. 2014;124(1):64–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (Review). Oncol Rep. 2014;31(2):523–32.PubMedGoogle Scholar
  13. Chi P, Allis CD, Wang GG. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10(7):457–69.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chin SP, Dickinson JL, Holloway AF. Epigenetic regulation of prostate cancer. Clin Epigenet. 2011;2(2):151–69.CrossRefGoogle Scholar
  15. Cho WC. Epigenetic alteration of microRNAs in feces of colorectal cancer and its clinical significance. Expert Rev Mol Diagn. 2011;11(7):691–4.CrossRefPubMedGoogle Scholar
  16. Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol. 2004;11(11):1037–43.CrossRefPubMedGoogle Scholar
  17. Cotto M, Cabanillas F, Tirado M, García MV, Pacheco E. Epigenetic therapy of lymphoma using histone deacetylase inhibitors. Clin Transl Oncol. 2010;12(6):401–9.CrossRefPubMedGoogle Scholar
  18. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cruickshank MN, Besant P, Ulgiati D. The impact of histone posttranslational modifications on developmental gene regulation. Amino Acids. 2010;39(5):1087–105.CrossRefPubMedGoogle Scholar
  20. De Koning L, Corpet A, Haber JE, Almouzni G. Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol. 2007;14(11):997–1007.CrossRefPubMedGoogle Scholar
  21. Delpu Y, Cordelier P, Cho WC, Torrisani J. DNA methylation and cancer diagnosis. Int J Mol Sci. 2013;14(7):15029–58.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dressler GR. Epigenetics, development, and the kidney. J Am Soc Nephrol JASN. 2008;19(11):2060–7.CrossRefPubMedGoogle Scholar
  23. Duval A, Rolland S, Compoint A, Tubacher E, Iacopetta B, Thomas G, Hamelin R. Evolution of instability at coding and non-coding repeat sequences in human MSI-H colorectal cancers. Hum Mol Genet. 2001;10:513–8.CrossRefPubMedGoogle Scholar
  24. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.CrossRefPubMedGoogle Scholar
  25. Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics. 2011;3(5):581–609.CrossRefPubMedGoogle Scholar
  26. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39(Database issue):D945–50.CrossRefPubMedGoogle Scholar
  27. Fornaro L, Vivaldi C, Caparello C, Musettini G, Baldini E, Masi G, Falcone A. Pharmacoepigenetics in gastrointestinal tumors: MGMT methylation and beyond. Front Biosci (Elite edition). 2016;8:170–80.CrossRefGoogle Scholar
  28. Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, Zhou X, Jones PA. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009;69(6):2623–9.CrossRefPubMedGoogle Scholar
  29. Gan HK, Seruga B, Knox JJ. Targeted therapies for renal cell carcinoma – more gains from using them again. Curr Oncol. 2009;16(S1):45–51.CrossRefGoogle Scholar
  30. Gardner KE, Allis CD, Strahl BD. Operating on chromatin, a colorful language where context matters. J Mol Biol. 2011;409(1):36–46.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet. 2002;3(37):101–28.CrossRefPubMedGoogle Scholar
  32. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hegi ME, Sciuscio D, Murat A, Levivier M, Stupp R. Epigenetic deregulation of DNA repair and its potential for therapy. Clin Cancer Res. 2009;15(16):5026–31.CrossRefPubMedGoogle Scholar
  34. Heller G, Zielinski CC, Zöchbauer-Müller S. Lung cancer: from single-gene methylation to methylome profiling. Cancer Metastasis Rev. 2010;29(1):95–107.CrossRefPubMedGoogle Scholar
  35. Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res/Rev Mutat Res. 2011;727(3):55–61.CrossRefGoogle Scholar
  36. Herceg Z, Ushijima T. Introduction: epigenetics and cancer. Adv Genet. 2010;70:1–23.PubMedGoogle Scholar
  37. Herman JG. Epigenetics in lung cancer: focus on progression and early lesions. Chest. 2004;125(5 Suppl):119S–22S.CrossRefPubMedGoogle Scholar
  38. Imhof A. Epigenetic regulators and histone modification. Brief Funct Genom Proteom. 2006;5(3):222–7.CrossRefGoogle Scholar
  39. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochimica et Biophysica Acta (BBA)-Gene Regul Mech. 2010;1799:694–701.CrossRefGoogle Scholar
  40. Jiang W, Liu N, Chen XZ, Sun Y, Li B, Ren XY, Qin WF, Jiang N, Xu YF, Li YQ, Ren J, Cho WC, Yun JP, Zeng J, Liu LZ, Li L, Guo Y, Mai HQ, Zeng MS, Kang TB, Jia WH, Shao JY, Ma J. Genome-wide identification of a methylation gene panel as a prognostic biomarker in nasopharyngeal carcinoma. Mol Cancer Ther. 2015;14(12):2864–73.CrossRefPubMedGoogle Scholar
  41. Jones PA, Baylin SB. The epigenomics cancer. Cell. 2007;128(4):683–92.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28(10):1069–78.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kim YS, Deng G. Epigenetic changes (aberrant DNA methylation) in colorectal neoplasia. Gut Liver. 2007;1(1):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kouzarides T. Chromatin modifications and their function. Cell. 2007a;128(4):693–705.CrossRefPubMedGoogle Scholar
  46. Kouzarides T. Chromatin modifications and their function. Cell. 2007b;128:693–705.CrossRefPubMedGoogle Scholar
  47. Lachenmayer A, Alsinet C, Chang CY, Llovet JM. Molecular approaches to treatment of hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):S264–72.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389:251–60.CrossRefPubMedGoogle Scholar
  49. Lustberg MB, Ramaswamy B. Epigenetic therapy in breast cancer. Curr Breast Cancer Rep. 2010;3(1):34–43.CrossRefGoogle Scholar
  50. Lv JF, Hu L, Zhuo W, Zhang CM, Zhou HH, Fan L. Epigenetic alternations and cancer chemotherapy response. Cancer Chemother Pharmacol. 2015;77(4):673–84.CrossRefPubMedGoogle Scholar
  51. Mack SC, Hubert CG, Miller TE, Taylor MD, Rich JN. An epigenetic gateway to brain tumor cell identity. Nat Neurosci. 2015;19(1):10–9Google Scholar
  52. Mahadevan D, Fisher RI. Novel therapeutics for aggressive non- Hodgkin’s lymphoma. J Clin Oncol. 2011;29(14):1876–84.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Malkhosyan S, Rampino N, Yamamoto H, Perucho M. Frameshift mutator mutations. Nature. 1996;382(6591):499–500.CrossRefPubMedGoogle Scholar
  54. Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26(9):1351–6.CrossRefPubMedGoogle Scholar
  55. Martin GS. The road to Src. Oncogene. 2004;23:7910–7.CrossRefPubMedGoogle Scholar
  56. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Wang T, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nyström M. Diet and epigenetics in colon cancer. World J Gastroenterol. 2009;15(3):257.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Perucho M. Microsatellite instability: the mutator that mutates the other mutator. Nat Med. 1996;2:630–1.CrossRefPubMedGoogle Scholar
  59. Petrie K, Zelent A, Waxman S. Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol. 2009;16(2):84–91.CrossRefPubMedGoogle Scholar
  60. Raha P, Thomas S, Munster PN. Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance. Epigenomics. 2011;3(4):451–70.CrossRefPubMedGoogle Scholar
  61. Razvi E. Epigenetic research classes and assay trends. GEN Reports: Market & Tech Analysis. 2013; 1–10.Google Scholar
  62. Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9.CrossRefPubMedGoogle Scholar
  63. Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm Genome. 2008;19:517–25.CrossRefPubMedGoogle Scholar
  64. Saijo K, Katoh T, Shimodaira H, Oda A, Takahashi O, Ishioka C. Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors. Cancer Sci. 2012;103(11):1994–2001.CrossRefPubMedGoogle Scholar
  65. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.CrossRefPubMedGoogle Scholar
  66. Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteome. 2012;75(12):3419–33.CrossRefGoogle Scholar
  67. Sippl W, Jung M. Epigenetic targets in drug discovery. Chem List. 2010;104:131–2.Google Scholar
  68. Stratton MR, Campbel PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.CrossRefPubMedGoogle Scholar
  70. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tischoff I. DNA methylation in hepatocellular carcinoma. World J Gastroenterol. 2008;14(11):1741.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia. 2010;15(1):5–17.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.CrossRefPubMedGoogle Scholar
  74. Weake VM, Workman JL. Histone ubiquitination: triggering gene activity. Mol Cell. 2008;29(6):653–63.CrossRefPubMedGoogle Scholar
  75. Wee S, Dhanak D, Li H, Armstrong SA, Copeland RA, Sims R, Baylin SB, Liu XS, Schweizer L. Targeting epigenetic regulators for cancer therapy. Ann N Y Acad Sci. 2014;1309(1):30–6.CrossRefPubMedGoogle Scholar
  76. W-jian S, Zhou X, Zheng J-hang LMD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin. 2012;44(1):80–91.CrossRefGoogle Scholar
  77. Wu K, Sharma S, Venkat S, Liu K, Zhou X, Watabe K. Non-coding RNAs in cancer brain metastasis. Front Biosci (Scholar edition). 2016;8:187–202.CrossRefGoogle Scholar
  78. Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med. 2011;183(10):1295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yoshimi A, Kurokawa M. Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem. 2011;112(2):415–24.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of BioinformaticsIndian Institute of Information TechnologyAllahabadIndia

Personalised recommendations