Skip to main content

Quantum Field Theory (QFT) on the Lattice

  • Chapter
  • First Online:
Lattice Quantum Chromodynamics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1392 Accesses

Abstract

In 1964, Gell-Mann [1] and Zweig [2] proposed that hadrons, the particles which experience strong interactions, are made of quarks. Quarks are confined within hadrons and never seen in isolation. Electron-nucleon scattering experiments at large momentum transfer could be explained by assuming the nucleon is made of almost-free point-like constituents called partons [35].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the space of complex fields \(\varphi (\underline{x})\) the scalar product is defined as \((\varphi ,{\varphi }')=a^3\sum _{\underline{x}}\varphi (\underline{x})^*{\varphi }'(\underline{x})\). The adjoint \(\hat{A}^\dagger \) of an operator \(\hat{A}\) acting on the fields is defined as \((\varphi ,\hat{A}{\varphi }')=(\hat{A}^\dagger \varphi ,{\varphi }')\). A self-adjoint operator has \(\hat{A}^\dagger =\hat{A}\).

  2. 2.

    It is not necessary for the lattice action to reproduce the continuum action at the classical level. There may be a larger class of actions which share the same quantum continuum limit despite they do not reproduce the classical continuum form, see e.g. the so called topological actions for the non-linear sigma model [36].

  3. 3.

    http://luscher.web.cern.ch/luscher/openQCD/.

  4. 4.

    http://www.scholarpedia.org/article/Lattice_quantum_field_theory.

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  2. G. Zweig, Preprints CERN-TH 401 and 412 (1964)

    Google Scholar 

  3. J.D. Bjorken, E.A. Paschos, Phys. Rev. 185, 1975 (1969)

    Article  ADS  Google Scholar 

  4. R.P. Feynman, Gordon and Breach, p. 237 (1970)

    Google Scholar 

  5. R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)

    Article  ADS  Google Scholar 

  6. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. 47B, 365 (1973)

    Article  ADS  Google Scholar 

  7. H. Weyl, Z. Phys. 56, 330 (1929)

    Article  ADS  Google Scholar 

  8. G.’t Hooft, unpublished. See, however, Proceedings of Colloquium on Renormalization of Yang-Mills Fields and Applications to Particle Physics, Marseilles, 1972, ed. by C.P. Korthals-Altes. See also Nucl. Phys. B254, 11 (1985)

    Google Scholar 

  9. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  10. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  11. P. Söding, Eur. Phys. J. H35, 3 (2010). doi:10.1140/epjh/e2010-00002-5

    ADS  Google Scholar 

  12. K.G. Wilson, Phys. Rev. D 10, 2445 (1974). doi:10.1103/PhysRevD.10.2445

    Article  ADS  Google Scholar 

  13. K.G. Wilson, Nucl. Phys. Proc. Suppl. 140, 3 (2005). doi:10.1016/j.nuclphysbps.2004.11.271.[,3(2004)]

    Article  ADS  Google Scholar 

  14. I. Montvay, G. Münster, Quantum Fields on a Lattice (Univ. Pr., Cambridge, UK, 1994), p. 491 (Cambridge monographs on mathematical physics), http://www.slac.stanford.edu/spires/find/hep/www?key=3030474

  15. T. DeGrand, C. DeTar, Lattice Methods for Quantum Chromodynamics (World Scientific, Singapure, 2006)

    Google Scholar 

  16. U. Wolff, Quantum Field Theory, lecture note, HU Berlin, unpublished (2010)

    Google Scholar 

  17. J. Smit, Cambridge. Lect. Notes Phys. 15, 1 (2002)

    Google Scholar 

  18. M. Creutz, in Quarks, Gluons and Lattices. Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 1985), http://www-spires.fnal.gov/spires/find/books/www?cl=QC793.3.F5C73::1983

  19. M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi, M. Testa, Nucl. Phys. B 262, 331 (1985). doi:10.1016/0550-3213(85)90290-1

    Article  ADS  Google Scholar 

  20. M. Lüscher, S. Sint, R. Sommer, P. Weisz, Nucl. Phys. B 478, 365 (1996). doi:10.1016/0550-3213(96)00378-1

    Article  ADS  Google Scholar 

  21. H.B. Nielsen, M. Ninomiya, Phys. Lett. B 105, 219 (1981). doi:10.1016/0370-2693(81)91026-1

    Article  ADS  Google Scholar 

  22. H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 185(20), 1981 (1982). doi:10.1016/0550-3213(81)90361-8.[Erratum:Nucl.Phys.B195541]

    MathSciNet  Google Scholar 

  23. H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 193, 173 (1981). doi:10.1016/0550-3213(81)90524-1

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Friedan, Commun. Math. Phys. 85, 481 (1982). doi:10.1007/BF01403500

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Lüscher, Phys. Lett. B 428, 342 (1998). doi:10.1016/S0370-2693(98)00423-7

    Article  ADS  Google Scholar 

  26. M. Lüscher, Commun. Math. Phys. 54, 283 (1977). doi:10.1007/BF01614090

    Article  ADS  Google Scholar 

  27. J.B. Kogut, L. Susskind, Phys. Rev. D 11, 395 (1975). doi:10.1103/PhysRevD.11.395

    Article  ADS  Google Scholar 

  28. L. Susskind, Phys. Rev. D 16, 3031 (1977). doi:10.1103/PhysRevD.16.3031

    Article  ADS  Google Scholar 

  29. H.S. Sharatchandra, H.J. Thun, P. Weisz, Nucl. Phys. B 192, 205 (1981). doi:10.1016/0550-3213(81)90200-5

    Article  ADS  Google Scholar 

  30. B. Bunk, M. Della Morte, K. Jansen, F. Knechtli. Nucl. Phys. B697, 343 (2004). doi:10.1016/j.nuclphysb.2004.07.023

  31. P.H. Ginsparg, K.G. Wilson, Phys. Rev. D 25, 2649 (1982). doi:10.1103/PhysRevD.25.2649

    Article  ADS  Google Scholar 

  32. P. Hasenfratz, V. Laliena, F. Niedermayer, Phys. Lett. B 427, 125 (1998). doi:10.1016/S0370-2693(98)00315-3

    Article  ADS  Google Scholar 

  33. H. Neuberger, Phys. Lett. B 417, 141 (1998). doi:10.1016/S0370-2693(97)01368-3

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Hernandez, K. Jansen, M. Luscher, Nucl. Phys. B 552, 363 (1999). doi:10.1016/S0550-3213(99)00213-8

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann, A. Strebel, Numer. Math. (2015). doi:10.1007/s00211-015-0725-6

    Google Scholar 

  36. W. Bietenholz, U. Gerber, M. Pepe, U.J. Wiese, JHEP 12, 020 (2010). doi:10.1007/JHEP12(2010)020

    Article  ADS  Google Scholar 

  37. P. Weisz, in Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3–28, 2009 (2010), pp. 93–160, https://inspirehep.net/record/852286/files/arXiv:1004.3462.pdf

  38. M. Lüscher, P. Weisz, Commun. Math. Phys. 97, 59 (1985). doi:10.1007/BF01206178

    Article  ADS  Google Scholar 

  39. M. Lüscher, in Probing the Standard Model of Particle Interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th Session, Les Houches, France, July 28-September 5, 1997. Pt. 1, 2 (1998), pp. 229–280, http://alice.cern.ch/format/showfull?sysnb=0270921

  40. J. Zinn-Justin, Lect. Notes Phys. 659, 167 (2005)

    ADS  MathSciNet  Google Scholar 

  41. K. Symanzik, in Recent Developments in Gauge Theories (Cargèse 1979), ed. by G. ’t Hooft et al. (Plenum, New York, 1980)

    Google Scholar 

  42. P. Weisz, Nucl. Phys. B 212, 1 (1983). doi:10.1016/0550-3213(83)90595-3

    Article  ADS  MathSciNet  Google Scholar 

  43. K. Symanzik, in Mathematical Problems in Theoretical Physics, ed. by R. Schrader et al. Lecture Notes in Physics, vol. 153 (Springer, New York, 1982)

    Google Scholar 

  44. K. Symanzik, Nucl. Phys. B 226, 187 (1983). doi:10.1016/0550-3213(83)90468-6

    Article  ADS  MathSciNet  Google Scholar 

  45. K. Symanzik, Nucl. Phys. B 226, 205 (1983). doi:10.1016/0550-3213(83)90469-8

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Wilson, in Recent Developments in Gauge Theories (Cargèse 1979), ed. by G. ’t Hooft et al. (Plenum, New York, 1980)

    Google Scholar 

  47. M. Lüscher, P. Weisz, Phys. Lett. B 158, 250 (1985). doi:10.1016/0370-2693(85)90966-9

    Article  ADS  Google Scholar 

  48. B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 572 (1985). doi:10.1016/0550-3213(85)90002-1

    Article  ADS  Google Scholar 

  49. G. Heatlie, G. Martinelli, C. Pittori, G.C. Rossi, C.T. Sachrajda, Nucl. Phys. B 352, 266 (1991). doi:10.1016/0550-3213(91)90137-M

    Article  ADS  Google Scholar 

  50. R. Frezzotti, P.A. Grassi, S. Sint, P. Weisz, JHEP 0108, 058 (2001)

    Google Scholar 

  51. S. Sint, in Workshop on Perspectives in Lattice QCD Nara, Japan, October 31–November 11, 2005 (2007)

    Google Scholar 

  52. R. Frezzotti, G.C. Rossi, JHEP 08, 007 (2004). doi:10.1088/1126-6708/2004/08/007

    Article  ADS  Google Scholar 

  53. S. Capitani, Phys. Rep. 382, 113 (2003). doi:10.1016/S0370-1573(03)00211-4

    Article  ADS  MathSciNet  Google Scholar 

  54. H.J. Rothe, World Sci. Lect. Notes Phys. 43, 1 (1992). [World Sci. Lect. Notes Phys.82,1(2012)]

    Google Scholar 

  55. C. Gattringer, C.B. Lang, Lect. Notes Phys. 788, 1 (2010). doi:10.1007/978-3-642-01850-3

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Knechtli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Knechtli, F., Günther, M., Peardon, M. (2017). Quantum Field Theory (QFT) on the Lattice. In: Lattice Quantum Chromodynamics. SpringerBriefs in Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0999-4_1

Download citation

Publish with us

Policies and ethics