Skip to main content

Sediment Sampling in Estuaries: Site Selection and Sampling Techniques

Part of the Developments in Paleoenvironmental Research book series (DPER,volume 20)

Abstract

In this chapter a range of sediment sampling techniques specifically suited to estuarine conditions are briefly described and discussed. Advice is provided about the selection of appropriate coring sites and techniques for a variety of conditions, including water depth, varying sediment composition, and sample analytical requirements. In the section on experimental design we briefly consider issues to do with sample replication from both a biological and geological perspective. During coring, alterations are inevitably made to the texture of the sediment, including compaction and water loss, resulting in changes to bulk density and the structure of the pore spaces, and physical disruption to layering. We comment on the nature of some of these disturbances, their dependency on sediment composition, which techniques to choose to minimise occurrence and, if necessary, how and when to make measurements to determine the amount of change caused by coring. Several factors need to be considered during the core recovery phase to ensure optimal retrieval of the core. These include use of core catchers and plugs to minimise or prevent loss of sediment during recovery. Freeze coring is recommended where the sediment-water interface is poorly defined or the sediments are particularly watery. Finally, we discuss transport and initial storage of cores.

Keywords

  • Sediment coring
  • Site selection
  • Sampling technique
  • Subsurface
  • Stratigraphy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-024-0990-1_5
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-94-024-0990-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10

References

  • Alexander CR, Smith RG, Calder FD et al (1993) The historical record of metal enrichment in two Florida estuaries. Estuaries 16:627–637

    CAS  CrossRef  Google Scholar 

  • Bao R, Alonso A, Delgado C, Pages JL (2007) Identification of the main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain) since its origin 5700 cal yr BP. Palaeogeogr Palaeocl 247:296–312

    CrossRef  Google Scholar 

  • Bastin ES, Davis CA (1909) Peat deposits in Maine. US Geological Survey Bulletin 376, 127 p

    Google Scholar 

  • Bishop GA, Thomas DH, Sanger MC et al (2009) Vibracores and vibracore transects: constraining the geological and cultural history of St. Catherines Island. Anthropol Pap Am Mus 94:183–207

    Google Scholar 

  • Borrego J, López-González N, Carro B et al (2004) Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain). Mar Pollut Bull 49:1045–1053

    CAS  CrossRef  Google Scholar 

  • Brännvall M-L, Bindler R, Emteryd O et al (1997) Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water Air Soil Poll 100:243–252

    CrossRef  Google Scholar 

  • Brinkhurst RO (1974) The benthos of lakes. Macmillan, London, 190p

    CrossRef  Google Scholar 

  • Brooks GR (2011) Summary of a workshop on light-weight coring techniques and equipment used by the Northern Canada Division, Geological Survey of Canada. Open File 6746, 18p.

    Google Scholar 

  • Chen Z, Saito Y, Kanai Y et al (2004) Low concentration of heavy metals in the Yangtze estuarine sediments, China: a diluting setting. Estuar Coast Shelf Sci 60:91–100

    CAS  CrossRef  Google Scholar 

  • Debenay J-P, Jouanneau J-M, Sylvestre F et al (2007) Biological origin of rhythmites in muddy sediments of French Guiana. J Coast Res 23:1431–1442

    CrossRef  Google Scholar 

  • Dickinson JJ, Carey AG (1975) A comparison of two benthic infaunal samplers. Limnol Oceanogr 20:900–902

    CrossRef  Google Scholar 

  • Du Y, Cai S, Zhang X, Zhao Y (2001) Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis. Geomorphology 41:171–181

    CrossRef  Google Scholar 

  • Ellison J (2005) Holocene palynology and sea-level change in two estuaries in Southern Irian Jaya. Palaeogeogr Palaeocl 220:291–309

    CrossRef  Google Scholar 

  • Franchini AG, Zeyer J (2012) Freeze-coring method for characterization of microbial community structure and function in wetland soils at high spatial resolution. Appl Environ Microb 78:4501–4504

    CAS  CrossRef  Google Scholar 

  • Fries M, Hafsten U (1965) Asbjornsen’s peat sampler—the prototype of the Hiller sampler. Geol Foren Stock For 87:307–313

    CrossRef  Google Scholar 

  • Gil O, Vale C (2001) Evidence for polychlorinated biphenyls dechlorination in the sediments of Sado Estuary, Portugal. Mar Pollut Bull 42:452–460

    CrossRef  Google Scholar 

  • Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1, Basin analysis, coring, and chronological techniques. Kluwer Academic, Dordrecht, pp 73–105

    CrossRef  Google Scholar 

  • Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci Rev 105:101–120

    CrossRef  Google Scholar 

  • Grizzle RE, Penniman CA (1991) Effects of organic enrichment on estuarine macrofauna benthos: a comparison of sediment profile imaging and traditional methods. Mar Ecol Prog Ser 74:249–262

    CrossRef  Google Scholar 

  • Hvorslev MJ (1949) Subsurface exploration and sampling of soils for civil engineering purposes. U.S. Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi. American Society of Civil Engineers, Committee on Sampling and Testing, Soil Mechanics and Foundations Division, 521p

    Google Scholar 

  • Imperato DP (1987) A modification of the vibracoring technique for sandy sediment. J Sediment Res 57(4):788–789

    CrossRef  Google Scholar 

  • Jahnke RA, Alexander CR, Kostka JE (2003) Advective pore water input of nutrients to the Satilla River Estuary, Georgia, USA. Estuar Coast Shelf Sci 56:641–653

    CAS  CrossRef  Google Scholar 

  • James WF, Barko JW, Butler MG (2004) Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515:181–191

    CrossRef  Google Scholar 

  • Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248

    CrossRef  Google Scholar 

  • Kajak Z (1971) The benthos of standing waters. In: Edmondson WR, Winberg GG (eds) A manual for the assessment of secondary productivity in fresh Water. IBP Handbook No. 17. Blackwell, Oxford. pp 25–65

    Google Scholar 

  • Kelso KW (2007) Natural and anthropogenic influences on flow patterns and sediment characteristics in the Dona and Roberts Bay Estuarine System, Sarasota County, Florida. MSc Thesis, University of South Florida, Florida

    Google Scholar 

  • Kullenberg B (1947) The piston core sampler. Svensk Hydrografisk-Biologiska Komm Skrifter III (Hydrografi) 1:1–46

    Google Scholar 

  • Lanesky DE, Logan BW, Brown RG, Hine AC (1979) A new approach to portable vibracoring under water and on land. J Sediment Petrol 49:654–657

    CrossRef  Google Scholar 

  • Leroy SAG, Colman SM (2001) Coring and drilling equipment and procedures for recovery of long lacustrine sequences. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1, Basin analysis, coring and chronological techniques. Kluwer Academic, Dordrecht, pp 107–136

    CrossRef  Google Scholar 

  • Lessa G, Masselink G (1995) Morphodynamic evolution of a macrotidal barrier estuary. Mar Geol 129:25–46

    CrossRef  Google Scholar 

  • Levitan MA, Kuptsov VM, Romankevich EA, Kondratenko AV (2000) Some indication for Late Quaternary Pechora River discharge: results of vibrocore studies in the southeastern Pechora Sea. Int J Earth Sci 89:533–540

    CAS  CrossRef  Google Scholar 

  • Livingstone DA (1955) A lightweight piston sampler for lake deposits. Ecology 36:137–139

    CrossRef  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev 32:235–283

    CAS  CrossRef  Google Scholar 

  • Macreadie PI, Allen K, Kelaher BP, Ralph PJ, Skilbeck CG (2012) Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob Change Biol 18:891–901

    CrossRef  Google Scholar 

  • Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–165

    CAS  CrossRef  Google Scholar 

  • Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9:195–208

    CrossRef  Google Scholar 

  • Petts GE, Thoms MC, Brittan K, Atkin B (1989) A freeze-coring technique applied to pollution by fine sediments in gravel-bed rivers. Sci Total Environ 84:259–272

    CAS  CrossRef  Google Scholar 

  • Renberg I, Hansson H (2011) The HTH sediment corer. J Paleolimnol 40:655–659

    CrossRef  Google Scholar 

  • Ruiz-Halpern SR, Macko SA, Fourqurean JW (2008) The effects of manipulation of sedimentary iron and organic matter on sediment biogeochemistry and seagrasses in a subtropical carbonate environment. Biogeochemistry 87:113–126

    CAS  CrossRef  Google Scholar 

  • Sanders JE (1960) Kudinov vibro-piston core sampler; Russian solution to underwater sand-coring problem. Int Geol Rev 2:174–178

    Google Scholar 

  • Skilbeck CG, Heap AD, Woodroffe CD (2017) Geology and sedimentary history of modern estuaries. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, Developments in paleoenvironmental research 20. Springer, Dordrecht.

    Google Scholar 

  • Smith DG (1984) Vibracoring fluvial and deltaic sediments: tips on improving penetration recovery. J Sediment Petrol 54:660–663

    CrossRef  Google Scholar 

  • Smith DG (1992) Vibracoring: recent innovations. J Paleolimnol 7:137–143

    CrossRef  Google Scholar 

  • Turney CSM, Kershaw AP, Clemens SC, Branch N, Moss PT, Fifield LK (2004) Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428:306–309

    CAS  CrossRef  Google Scholar 

  • Veerschuren D (2000) Freeze coring soft sediments in tropical lakes. J Paleolimnol 24(3):361–365

    CrossRef  Google Scholar 

  • Walther D, Prebha S, Selvapathy P, Beck D (2003) Heavy metals from the river Adayar, India: infiltration into the adjacent groundwater aquifer. Ambio 32:153–157

    CrossRef  Google Scholar 

  • Wang Y, Oguchi T, Ridd P, Shen H (2013) Anthropogenic influence on sedimentation during the last 100 years inferred from magnetic properties in the Changjiang Estuary, China. Environ Earth Sci 70(4):1671–1680

    CrossRef  Google Scholar 

  • Weckström K, Lewis JP, Andrén E et al. (2016) Palaeoenvironmental history of the Baltic Sea: one of the largest Brackish-water ecosystems in the world. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of paleoenvironmental techniques in estuarine studies, Developments in paleoenvironmental research 20. Springer, Dordrecht.

    Google Scholar 

  • Wieckowski K (1989) A new method of coring in deep lakes with rod-operated samplers. Boreas 18:355–358

    Google Scholar 

  • Wright HE Jr, Cushing EJ, Livingstone DA (1965) Coring devices for lake sediments. In: Kummel B, Raup D (eds) Handbook of paleontological techniques. W.H. Freeman, San Francisco, pp 494–520

    Google Scholar 

  • Xu Y, Holmes CW, Jaffé R (2007) Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: a biomarker based study. Estuar Coast Shelf Sci 73:201–210

    CrossRef  Google Scholar 

  • Zong Y, Yu F, Huang G, Lloyd JM, Yim WWS (2010) The history of water salinity in the Pearl River estuary, China, during the Late Quaternary. Earth Surf Process 35:1221–1233

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

We thank the editors for the opportunity to contribute to this volume, and the two anonymous reviewers who provided thoughtful and detailed feedback towards its improvement. Images have been provided by a number of our colleagues and we are extremely grateful for their contributions; Duncan Cook (Australian Catholic University), Joanna Ellison (University of Tasmania), Dimitri Gutierrez (IMARPE, Peru), Matthew Hayes (University of Queensland), Kostas Kormas (University of Thessaly), Richard Niederreiter (Uwitec), Tim Patterson, Carleton University), Kaarina Weckström (GEUS), Wayne Wurtsbaugh (Utah State University), Vincent Vohnout (GeoCore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gregory Skilbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Skilbeck, C.G., Trevathan-Tackett, S., Apichanangkool, P., Macreadie, P.I. (2017). Sediment Sampling in Estuaries: Site Selection and Sampling Techniques. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_5

Download citation