Advertisement

The Whitefly Bemisia tabaci (Gennadius)

  • Xiaowei WangEmail author
  • Nianwan YangEmail author
Chapter
Part of the Invading Nature - Springer Series in Invasion Ecology book series (INNA, volume 11)

Abstract

The whitefly Bemisia tabaci (Gennadius) is a species complex containing at least 35 morphologically indistinguishable cryptic species. Some members of the complex are pests of agricultural and horticultural crops in temperate and tropical regions. During the past 20 years, two species of the complex, Middle East-Asia Minor 1 (hereafter MEAM1) and Mediterranean (hereafter MED), which have been commonly referred to as the B and Q ‘biotypes’, have risen to international prominence due to their global invasions. In the middle-1990s, the MEAM1 species invaded China most probably with the import of infested plants and seedlings and has become a pest since the late 1990s. In 2003, the MED species of the B. tabaci complex was first recorded in China and it is now the dominant species in the Yangtze River Valley and eastern coastal areas. In this chapter, we first reviewed the invasion histories of MEAM1 and MED whiteflies in China and their negative effects. Then, the research progresses on behavior, biotic, environmental and molecular mechanisms of MEAM1 and MED whitefly invasions and replacement of native whitefly species were discussed. Finally, the strategies for whitefly management in China were summarized. These research efforts have provided solid foundation for future investigations on the molecular mechanisms of whitefly invasions and are expected to open important avenues for the discovery of novel strategies for whitefly management in China.

Keywords

Bemisia tabaci China Invasion Management Whitefly 

References

  1. Abuduhani R, Abulimiti M, Jamali, R, Zhang YN, Li J, Ma DY (2013) Population dynamics and spatial distribution of Bemisia tabaci and dominat parasitic wasp Eretmocerus sp. from the field of jujubi intercropping with cotton. Xinjiang Agric Sci 50(10): 1842–1849 (in Chinese, English abstract)Google Scholar
  2. Alon M, Elbaz M, Ben-Zvi MM, Feldmesser E, Vainstein A, Morin S (2012) Insights into the transcriptomics of polyphagy: Bemisia tabaci adaptability to phenylpropanoids involves coordinated expression of defense and metabolic genes. Insect Biochem Mol Biol 42:251–263CrossRefPubMedGoogle Scholar
  3. Bi JL, Ballmer GR, Hendrix DL, Hennneberry TJ, Toscano NC (2001) Effect of cotton nitrogen fertilization on Bemisia argentifolii populations and honeydew production. Entomol Exp Appl 99:25–36CrossRefGoogle Scholar
  4. Bi JL, Lin DM, Li KS, Toscano NC (2005) Impact of cotton planting date and nitrogen fertilization on Bemisia argentifolii populations. Insect Sci 12:31–36CrossRefGoogle Scholar
  5. Bing XL, Ruan YM, Rao Q, Wang XW, Liu SS (2013) Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci 20:194–206CrossRefPubMedGoogle Scholar
  6. Boykin LM, De Barro PJ (2014) A practical guide to identifying members of the Bemisia tabaci species complex and other morphologically identical species. Front Ecol Evol. doi: 10.3389/fevo.2014.00045 Google Scholar
  7. Brown JK (1995) The sweet potato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex. Annu Rev Entomol 40:511–534CrossRefGoogle Scholar
  8. Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36:431–457CrossRefGoogle Scholar
  9. Cao ZG, Cao L (2011) The action threshold of Bemisia tabaci on protected tomato. Shanghai Agric Technol 6:122 (in Chinese, English abstract)Google Scholar
  10. Chen D, Zhang YH, Reziwanguli, Miriguli, Yang M, Pan WP, Ma DY (2012) Control effects of Yellow Sticky Trap (YST) to Bemisia tabaci in the greenhouses in Turpan Area. Xinjiang Agric Sci 49(2):255–260 (in Chinese, English abstract)Google Scholar
  11. Chu D, Zhang YJ, Cong B, Xu BY, Wu QJ (2005) Identification for Yunnan Q-biotype Bemisia tabaci population. Chin Bull Entomol 42:54–56Google Scholar
  12. Chu D, Li X, Zhang Y (2012) Microsatellite analyses reveal the sources and genetic diversity of the first-introduced Q-biotype population and the well-established B-biotype populations of Bemisia tabaci in China. Acta Entomol Sin 55:1377–1386Google Scholar
  13. Crowder DW, Dennehy TJ, Ellers-Kirk C, Yafuso LC, Ellsworth PC, Tabashnik BE, Carriere Y (2007) Field evaluation of resistance to pyriproxyfen in Bemisia tabaci (B biotype). J Econ Entomol 100:1650–1656CrossRefPubMedGoogle Scholar
  14. Cui XH, Wan FH, Xie M, Liu TX (2008) Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci Biotype B. J Insect Sci 8:1–10CrossRefGoogle Scholar
  15. Czosnek H, Ghanim M (2002) The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci – insights from studies with Tomato yellow leaf curl virus. Ann Appl Biol 140:215–231CrossRefGoogle Scholar
  16. Dalton R (2006) Whitefly infestations: the christmas invasion. Nature 443:898–900CrossRefPubMedGoogle Scholar
  17. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19CrossRefPubMedGoogle Scholar
  18. Dennehy TJ, Degain BA, Harpold VS, Zaborac M, Morin S, Fabrick JA, Nichols RL, Brown JK, Byrne FJ, Li X (2010) Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the New World. J Econ Entomol 103:2174–2186CrossRefPubMedGoogle Scholar
  19. Dik AJ, Albajes R (1999) Principals of epidemiology, population biology, damage relationships, and integrated control of diseases and pests. In: Albajes R, Lodovica-Gullino M, van Lenteren JC, Elad Y (eds) Integrated Pest and Disease Management in Greenhouse Crops. Springer, Amsterdam, pp 69–81CrossRefGoogle Scholar
  20. Edwards O, Papanicolaou A (2012) A roadmap for whitefly genomics research: lessons from previous insect genome projects. J Integr Agric 11:269–280CrossRefGoogle Scholar
  21. Elbaz M, Halon E, Malka O, Malitsky S, Blum E, Aharoni A, Morin S (2012) Asymmetric adaptation to indolic and aliphatic glucosinolates in the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Mol Ecol 21:4533–4546CrossRefPubMedGoogle Scholar
  22. Flint HM, Naranjo SE, Leggett JE, Henneberry TJ (1996) Cotton water stress, arthropod dynamics, and management of Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 89:1288–1300CrossRefGoogle Scholar
  23. Gao XL, Li JM, Xu HX, Yan GH, Jiu M, Liu SS, Wang XW (2015) Cloning of a putative extracellular Cu/Zn superoxide dismutase and functional differences of superoxide dismutases in invasive and indigenous whiteflies. Insect Sci 22:52–64CrossRefPubMedGoogle Scholar
  24. Ghanim M, Kontsedalov S (2007) Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. Pest Manag Sci 63:776–783CrossRefPubMedGoogle Scholar
  25. Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A (2009) Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 26:2731–2744CrossRefPubMedGoogle Scholar
  26. Godfrey LD, Goodell PB, Natwick ET, Haviland DR (2008) Insects and mites. In: UC IPM Pest Management Guidelines: cotton. UC ANR Publication 3444. http://www.ipm.ucdavis.edu/PMG/r114300311.html
  27. Gray S, Cilia M, Ghanim M (2014) Circulative,“nonpropagative” virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 89:141–199CrossRefPubMedGoogle Scholar
  28. He WB, Li J, Liu SS (2015) Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Sci Rep 5:7682CrossRefPubMedGoogle Scholar
  29. Henneberry TJ, Jech LJ, De La Torre TM (2002) Effects of cotton plant water stress on Bemisia tabaci strain B (Homoptera: Aleyrodidae) honeydew production. Southwest Entomol 27:117–133Google Scholar
  30. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256CrossRefPubMedGoogle Scholar
  31. Hong HJ, Yang YH, Wang LD (2011) Repellence and feeding deterrence of Verticillium lecanii toxic-VII against Bemisia tabaci. Chin J Appl Entomol 48(1):60–64 (in Chinese, with English abstract)Google Scholar
  32. Horowitz A, Antignus Y, Gerling D (2011) Management of Bemisia tabaci Whiteflies. Springer, DordrechtCrossRefGoogle Scholar
  33. Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu SS (2011) An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 6:e16061CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang YX, Yang NW, Qin Y, An F, Li ZH, Wan FH (2016) Enhanced stability in host–parasitoid interactions with autoparasitism and parasitoid migration. J Theor Biol 393:43–50CrossRefPubMedGoogle Scholar
  35. Hunter MS, Kelly SE (1998) Hyperparasitism by an exoticautoparasitoid: secondary host selection and the window of vulnerability of conspecific and native heterospecific hosts. Entomol Exp Appl 89:249–259CrossRefGoogle Scholar
  36. Ji XZ (2015) Oviposition and feeding choice of the tabacco whitefly, Bemisia tabaci (Gennadius) on different cucumber strains. Chinese Agricultural University, Master thesis (in Chinese, English abstract)Google Scholar
  37. Jiu M, Zhou XP, Tong L, Xu J, Yang X, Wan FH, Liu SS (2007) Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS One 2:e182CrossRefPubMedPubMedCentralGoogle Scholar
  38. Keyimu M, Xu HX, Xian JH, Li J, Wang HQ, Hu AZ, Ma DY (2014) Control effect evaluation of five environmental friendly insecticides against Bemisia tabaci MEAM1 cryptic species. Xinjiang Agric Sci 51(6):1137–1142 (in Chinese, with English abstract)Google Scholar
  39. Koch RL (2003) The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J Insect Sci 3:32PubMedPubMedCentralGoogle Scholar
  40. Li SJ, Xue X, Ahmed MZ, Ren SX, Du YZ, Wu JH, Cuthbertson AGS, Qiu BL (2011) Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Sci 18:101–112CrossRefGoogle Scholar
  41. Li S, Lao SB, Wang S, Guo XJ, Zhang F (2014a) Control effect of Orius sauteri collaborated with Encarsia formosa on Bemisia tabaci in the greenhouse. J Environ Entomol 36(6):978–982 (in Chinese, with English abstract)Google Scholar
  42. Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, Qian H, Tee C, van Loon JJ, Dicke M, Chua NH, Liu SS, Ye J (2014b) Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008Google Scholar
  43. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772CrossRefPubMedGoogle Scholar
  44. Liu SS, Colvin J, De Barro P (2012) Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J Integr Agric 11:176–186CrossRefGoogle Scholar
  45. Lu ZC, Wan FH (2008) Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Comp Biochem Physiol Part D Genomics Proteomics 3:257–262CrossRefPubMedGoogle Scholar
  46. Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, Zhang CX, Liu SS, Wang XW (2011) Global analysis of the transcriptional response of whitefly to Tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol 85:3330–3340CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luan JB, Wang YL, Wang J, Wang XW, Liu SS (2013a) Detoxification activity and energy cost is attenuated in whiteflies feeding on Tomato yellow leaf curl China virus-infected tobacco plants. Insect Mol Biol 22:597–607CrossRefPubMedGoogle Scholar
  48. Luan JB, Yao DM, Zhang T, Walling LL, Yang M, Wang YJ, Liu SS (2013b) Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett 16:390–398CrossRefPubMedGoogle Scholar
  49. Luan JB, Chen W, Hasegawa DK, Simmons AM, Wintermantel WM, Ling KS, Fei Z, Liu SS, Douglas AE (2015) Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol 7:2635–2647CrossRefPubMedPubMedCentralGoogle Scholar
  50. Luo C, Yao Y, Wang R (2002) The use of mitochondrial cytochrome oxidase I (mtCO I) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomol Sin 45:759–763Google Scholar
  51. Luo C, Jones C, Devine G, Zhang F, Denholm I (2010) Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot 29:429–434CrossRefGoogle Scholar
  52. Mahadav A, Kontsedalov S, Czosnek H, Ghanim M (2009) Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochem Mol Biol 39:668–676CrossRefPubMedGoogle Scholar
  53. Mascarin GM, Kobori NN, Quintela ED, Arthurs SP, Delalibera I (2014) Toxicity of non-ionic surfactants and interactions with fungal entomopathogens toward Bemisia tabaci biotype B. Biocontrol 59(1):111–123CrossRefGoogle Scholar
  54. Naranjo SE, Castle SJ, De Barro PJ, Liu SS (2010) Population dynamics, demograpgy, dispersal and spread of Bemisia tabaci. In Bemisia: Bionomics and Management of a Global Pest, pp 185–226. SpringerGoogle Scholar
  55. Nombela G, Beitia F, Muniz M (2001) A differential interaction study of Bemisia tabaci Q-biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B-biotype. Entomol Exp Appl 98:339–344CrossRefGoogle Scholar
  56. Nuessly GS, Meyerdirk DE, Coudriet DL, Henneberry TJ (1994) The effect of short season cotton production schedules on Bemisia tabaci (Gennadius). Southwest Entomol 19:209–217Google Scholar
  57. Pan H, Chu D, Yan W, Su Q, Liu B, Wang S, Wu Q, Xie W, Jiao X, Li R, Yang N, Yang X, Xu B, Brown JK, Zhou X, Zhang Y (2012) Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoS One 7:e34817CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pan H, Preisser E, Chu D, Wang S, Wu Q, Carriére Y, Zhou X, Y Z (2015) Insecticides promote viral outbreaks by altering herbivore competition. Ecol Appl 25: 1585–1595Google Scholar
  59. Qiu BL, Ren SX (2006) Using yellow sticky traps to inspect population dynamics of Bemisia tabaci and its parasitoids. Chin Bull Entomol 43(1):53–56. in Chinese, English abstractGoogle Scholar
  60. Qiu BL, Ren SX, Wen S, Mandour N (2003a) Biotype identification of the populations of Bemisia tabaci (Homoptera: Aleyrodidae) in China using RAPD-PCR. Acta Entomol Sin 46:605–608Google Scholar
  61. Qiu BL, Ren SX, Xiao Y, Mandour NS (2003b) Effectiveness of Eretmocerus sp. and Aschersonia aleyrodis in controlling Bemisia tabaci pooulations. Chin J Appl Ecol 14(12):2251–2254 (in Chinese, with English abstract)Google Scholar
  62. Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, Latorre A, Klein CC, Vavre F, Sagot MF, Liu SS, Mouton L, Wang XW (2015) Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 16:226CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ren SX, Wang ZZ, Qiu BL, Xiao Y (2001) The pest status of Bemisia tabaci in China and non-chemical control strategies. Entomol Sin 8(3):279–288Google Scholar
  64. Ren SX, Qiu BL, Ge F, Zhang YJ, Du YZ, Chen XX, Guo JY, Lin KJ, Peng ZQ, Yao SL, Hu YH, Wang LD, Zhang WQ (2011) Research progress of the monitoring, forecast and sustainable management of whitefly pests in China. Chin J Appl Entomol 48(1):7–15 (in Chinese, English abstract)Google Scholar
  65. Ren SX, Liu TX, Du YZ, Peng ZQ, Qiu BL, Ge F (2014) Systematic investigation and monitoring of whitefly pests in a vegetable ecosystem. Chin J Appl Entomol 51(3):859–862 (in Chinese, English abstract)Google Scholar
  66. Roberts PA, Thomason IJ (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Dis 70:547–551CrossRefGoogle Scholar
  67. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95:9750–9754CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shen BB, Ren SX, Musa PH, Chen C (2005) A study on economic threshold of Bemisia tabaci. Acta Agric Univ Jiangxiensis, 27(2):234–237 (in Chinese, English abstract)Google Scholar
  69. Shi X, Pan H, Xie W, Wu Q, Wang S, Liu Y, Fang Y, Chen G, Gao X, Zhang Y (2013) Plant virus differentially alters the plant’s defense response to its closely related vectors. PLoS One 8:e83520CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sun D, Liu Y, Qin L, Xu J, Li F, Liu S (2013a) Competitive displacement between two invasive whiteflies: insecticide application and host plant effects. Bull Entomol Res 103:344–353CrossRefPubMedGoogle Scholar
  71. Sun HL, Zhou FQ, You XY, Hu RL, Lv M, Wu L, Zhu SD (2013b) The selectivity of Q-biotype Bemisia tabaci for twenty varities of eggplang, Solanum melongena. Plant Prot 39(2):67–71 (in Chinese, English abstract)Google Scholar
  72. Sun D, Li J, Liu Y, Crowder D, Liu S (2014) Effects of reproductive interference on the competitive displacement between two invasive whiteflies. Bull Entomol Res 104:334–346CrossRefPubMedGoogle Scholar
  73. Tan XL, Hu NN, Zhang F, Ramirez-Romero R, Desneus N, Wang S, Ge F (2016) Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci. Sci Rep-UK 6:28245CrossRefGoogle Scholar
  74. Teng X, Wan F, Chu D (2010) Bemisia tabaci biotype Q dominates other biotypes across China. Fla Entomol 93:363–368CrossRefGoogle Scholar
  75. Tian J, Hao C, Liang L, Ma RY (2014) Effects of temperature and relative humidity on conidial germination of Isaria fumosorosea (Hypocreales: Cordycipitaceae) IF-1106 and pathogenicity of the fungus against Bemisia tabaci (Homoptera: Aleyrodidae). Mycosystema 33(3):668–679Google Scholar
  76. Tian XQ, Li N, Liu XC, Xu YJ, Zhang SZ (2015) The occurrence and integrated pest management of Bemisia tabaci on vegetables. Shaanxi J Agric Sci 61(1):123–126 (in Chinese, English abstract)Google Scholar
  77. Wang H (2007) Study on the ecology and physiology traits of Bemisia tabaci on three brassica vegetables and abutilon and the management strategy. Yangzhou University, Master thesis (in Chinese, English abstract)Google Scholar
  78. Wang LD, Huang J, Liu B (2006) Assessment of the control effectiveness of insecticidal toxins from Verticillium lecanii on the population of Bemisia tabaci (Gennadius) in greenhouse Assessment of the control effectiveness of insecticidal toxins from Verticillium lecanii on the population of Bemisia tabaci (Gennadius) in greenhouse. Acta Ecol Sin 26(2):391–398Google Scholar
  79. Wang Z, Yao M, Wu Y (2009) Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Manag Sci 65:1189–1194CrossRefPubMedGoogle Scholar
  80. Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010a) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11:400CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang Z, Yan H, Yang Y, Wu Y (2010b) Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Manag Sci 66:1360–1366CrossRefPubMedGoogle Scholar
  82. Wang XW, Luan JB, Li JM, Su YL, Xia J, Liu SS (2011) Transcriptome analysis and comparison reveal divergence between two invasive whitefly cryptic species. BMC Genomics 12:458CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS (2012) Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics 13:529CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang YL, Wang YJ, Luan JB, Yan GH, Liu SS, Wang XW (2013) Analysis of the transcriptional differences between indigenous and invasive whiteflies reveals possible mechanisms of whitefly invasion. PLoS One 8:e62176CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang LL, Wang XR, Wei XM, Huang H, Wu JX, Chen XX, Liu SS, Wang XW (2016) The autophagy pathway participates in resistance to Tomato yellow leaf curl virus infection in whiteflies. Autophagy 12(9):1560–1574CrossRefPubMedGoogle Scholar
  86. Wei J, Zhao JJ, Zhang T, Li FF, Ghanim M, Zhou XP, Ye GY, Liu SS, Wang XW (2014) Specific cells in the primary salivary glands of the whitefly Bemisia tabaci control retention and transmission of begomoviruses. J Virol 88:13460–13468CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wu L (2013) Studies on resistance of different pepper varieties to Bemisia tabaci (Gennadius) and its physiological and biochemical mechanism. Yangzhou University, Master thesis (in Chinese, English abstract)Google Scholar
  88. Wu S, Wang Z, Wu Y (2010) Competition between the B and Q biotypes of Bemisia tabaci and its relevance to insecticide resistance. Chin Bull Entomol 47:1118–1121Google Scholar
  89. Xia J, Zhang CR, Zhang S, Li FF, Feng MG, Wang XW, Liu SS (2013) Analysis of whitefly transcriptional responses to Beauveria bassiana infection reveals new insights into insect-fungus interactions. PLoS One 8(7):e68185CrossRefPubMedPubMedCentralGoogle Scholar
  90. Xie W, Liu Y, Wang S, Wu Q, Pan H, Yang X, Guo L, Zhang Y (2014) Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in china: effects of insecticide type and whitefly species, strain, and stage. J Insect Sci 14:261CrossRefPubMedGoogle Scholar
  91. Xu J, De Barro PJ, Liu SS (2010a) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull Entomol Res 100:359–366CrossRefPubMedGoogle Scholar
  92. Xu R, Li W, Zhang LF, Lin YH, Qi B, Xing H (2010b) A study on the inheritance of resistance to whitefly in Soybean. Sci Agric Sin 43(1):80–86 (in Chinese, English abstract)Google Scholar
  93. Xu J, Lin KK, Liu SS (2011) Performance on different host plants of an alien and an indigenous Bemisia tabaci from China. J Appl Entomol 135(10):771–779CrossRefGoogle Scholar
  94. Xu HX, Hong Y, Zhang MZ, Wang YL, Liu SS, Wang XW (2015a) Transcriptional responses of invasive and indigenous whiteflies to different host plants reveal their disparate capacity of adaptation. Sci Rep 5:10774CrossRefPubMedPubMedCentralGoogle Scholar
  95. Xu HY, Yang NW, Wan FH (2015b) Field cage evaluation of interspecific interaction of two aphelinid parasitoids and biological control effect on Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1. Entomol Sci 18:237–244CrossRefGoogle Scholar
  96. Xu HY, Yang NW, Duan M, Wan FH (2016) Functional response, host stage preference and interference of two whitefly parasitoids. Insect Sci 23:134–144CrossRefPubMedGoogle Scholar
  97. Yang NW, Wan FH (2011) Host suitability of different instars of Bemisia tabaci biotype B for the parasitoid Eretmocerus hayati. Biol Control 59:313–317CrossRefGoogle Scholar
  98. Yang NW, Ji LL, Lövei GL, Wan FH (2012) Shifting preference between oviposition vs. host-feeding under changing host densities in two Aphelinid parasitoids. PLoS One 7:e41189CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yang N, Xie W, Jones CM, Bass C, Jiao X, Yang X, Liu B, Li R, Zhang Y (2013a) Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance. Insect Mol Biol 22:485–496CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yang N, Xie W, Yang X, Wang S, Wu Q, Li R, Pan H, Liu B, Shi X, Fang Y, Xu B, Zhou X, Zhang Y (2013b) Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam. PLoS One 8:e61820CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yang NW, Zang LS, Wang S, Guo JY, Xu HX, Zhang F, Wan FH (2014) Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biol Control 68:92–102CrossRefGoogle Scholar
  102. Yao FL, Zheng Y, Zhao JW, Desneux N, He YX, Weng QY (2015) Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. Chemosphere 128:49–55CrossRefPubMedGoogle Scholar
  103. Ye XD, Su YL, Zhao QY, Xia WQ, Liu SS, Wang XW (2014) Transcriptomic analyses reveal the adaptive features and biological differences of guts from two invasive whitefly species. BMC Genomics 15:370CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zhang ZL (2000) Some thoughts to the outbreaks of tobacco whitefly. Beijing Agri Sci:1–3Google Scholar
  105. Zhang GF, Lü ZC, Wan FH (2007a) Detection of Bemisia tabaci remains in predator guts using a sequencecharacterized amplified region marker. Entomol Exp Appl 123:81–90CrossRefGoogle Scholar
  106. Zhang GF, Lü ZC, Wan FH, Lövei GL (2007b) Real-time PCR quantification of Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype remains in predator guts. Mol Ecol Notes 6:947–954CrossRefGoogle Scholar
  107. Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou XP, Liu SS (2012) Begomovirus- whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21:1294–1304CrossRefPubMedGoogle Scholar
  108. Zhang YB, Yang NW, Zhang GF, Wang JJ, Wan FH (2015) Identification of naturally occurring Eretmocerus parasitoids by CO I sequence analysis and crossing test. J Environ Entomol 37(2):281–292 (in Chinese, English abstract)Google Scholar
  109. Zhu DT, Xia WQ, Rao Q, Liu SS, Ghanim M, Wang XW (2016) Sequencing and comparison of the Rickettsia genomes from the whitefly Bemisia tabaci Middle East Asia Minor I. Insect Sci 23:531–542CrossRefPubMedGoogle Scholar
  110. Zou CH, Li L, Dong TY, Zhang BW, Hu QB (2014) Joint action of the entomopathogenic fungus Isaria fumosorosea and four chemical insecticides against the whitefly Bemisia tabaci. Biocontrol Sci Techn 24(3):315–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect SciencesZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations