Advertisement

Codling Moth Cydia pomonella (L.)

  • Maohua ChenEmail author
  • Xinle Duan
  • Yuting Li
  • Qiulei Men
  • Fanghao Wan
Chapter
Part of the Invading Nature - Springer Series in Invasion Ecology book series (INNA, volume 11)

Abstract

The codling moth, Cydia pomonella (L.), is one of the highly invasive pests that devastates pome and walnut fruit trees worldwide. It has been listed in the most harmful quarantine species in China. Since the first report of this species in northwestern China in 1957, C. pomonella spreads rapidly from Xinjiang Province to Gansu Province, Ningxia Province, and other fruit production regions in the northwest. This species was found in some regions in northeastern China since 2006. C. pomonella not only causes serious damages to fruit production, but also influences the export of fruits from China. In this chapter, we review the biology, damage, distribution and invasion history of the codling moth. The invasion sources, population genetics, monitor and control the codling moth in China was also summarized in this chapter.

Keywords

Codling moth Invasive species Distribution Population genetic Control strategy 

References

  1. Asser-Kaiser S, Radtke P, El-Salamouny S, Winstanley D, Jehle JA (2011) Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology 410(2):360–367CrossRefPubMedGoogle Scholar
  2. Ayres RM, Pettigrove VJ, Hoffmann AA (2010) Low diversity and high levels of population genetic structuring in introduced eastern mosquitofish (Gambusia holbrooki) in the greater Melbourne area, Australia. Biol Invasions 12:3727–3744CrossRefGoogle Scholar
  3. Bahatigul I (2009) The damage and control of Cydia pomonella in Xinjiang Province. Prot For Sci Technol 4:118–120Google Scholar
  4. Balazs K, Bujaki G, Farkas (1996) Incorporation of apples clearwing (Synanthedon myopaeformis, Bork) control into the IPM system of apple. Acta Hortic 422:134–139Google Scholar
  5. Barnes MM (1991) Codling moth occurrence, host race formation and damage. In: van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control, 9 July, 1991. Elsevier, Amsterdam, pp 313–327Google Scholar
  6. Bloem S, Carpenter J, Hofmeyr H (2007) Area-wide control tactics for the false codling moth Thaumatotibia leucotreta in South Africa: a potential invasive species. In: MJB V, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. From research to field implementation. Springer, Dordrecht, pp 351–359CrossRefGoogle Scholar
  7. Blomefield T (1994) Codling moth resistance: is it here, and how do we manage it? Deciduous Fruit Grower 44:130–132Google Scholar
  8. Bohonak AJ (1999) Dispersal, gene flow and population structure. Q Rev Biol 74:21–45CrossRefPubMedGoogle Scholar
  9. Boivin T, Bouvier JC, Beslay D, Suphanor B (2004) Variability in diapause propensity within populations of a temperate insect species: interactions between insecticide resistance genes and photoperiodism. Biol J Linn Soc 83:341–351CrossRefGoogle Scholar
  10. Buban T, Inantsy F, Kajati I, Molnar M, Sallai P, Szoeke L, Lantos J (1996) Experiences with integrated pest management in apple orchard during the initial phase of a long term study. Acta Hortic 422:102–106Google Scholar
  11. Chen MH, Dorn S (2010) Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull Entomol Res 100:75–85CrossRefPubMedGoogle Scholar
  12. Chu D, Liu GX, Fan ZX, Tao YL, Zhang YJ (2006) Genetic differentiation of different geographical populations of Bemisia tabaci (Gennadius) complex. Sci Agric Sin 39(8):1571–1580Google Scholar
  13. Ciglar I (1998) Integrirana zaštita voćaka i vinove loze. Zrinski, ČakovecGoogle Scholar
  14. Croft BA, Riedl HW (1991) Chemical control and resistance to pesticides of the codling moth. In: Van Der Geest LPS, Evenhuis HH (eds) World crop pests, Tortricid pests: their biology, natural enemies and control, vol 5. Elsevier, Amsterdam, pp 371–387Google Scholar
  15. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:43–449Google Scholar
  16. Endersby NM, Mckechnie SW, Ridland PM, Weeks AR (2006) Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Mol Ecol 15(1):107–108CrossRefPubMedGoogle Scholar
  17. FAO (2007) FAO statistical database. [Online] Available: http://faostat.fao.org
  18. Franck P, Reyes M, Olivares J, Sauphanor B (2007) Genetic differentiation in the codling moth: comparison between microsatllite and insecticide resistant markers. Mol Ecol 16(17):3554–3564CrossRefPubMedGoogle Scholar
  19. Franck P, Timm AE (2010) Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. J Appl Entomol 134(3):191–200CrossRefGoogle Scholar
  20. Fuentes-Contreras E, Espinoza JL, Lavandero B, Ramírez CC (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. J Econ Entomol 101(1):190–198CrossRefPubMedGoogle Scholar
  21. Grapputo A, Boman S, Lindstroem L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14(14):4207–4219CrossRefPubMedGoogle Scholar
  22. He SW, Da SC, Gao YM, Wu D, Wang ZH (2014) Research on the forecasting and control time of codling moth. Mod Agric Technol 5:169Google Scholar
  23. Higbee BS, Calkins CO, Temple CA (2001) Overwintering of codling moth (Lepidoptera: Tortricidae) larvae in apple harvest bins and subsequent moth emergence. J Econ Entomol 94:1511–1517CrossRefPubMedGoogle Scholar
  24. Hoy MA (2003) Insect molecular genatics, an introduction to principes and applications, 2nd edn. Academic Press, Elsevier ScienceGoogle Scholar
  25. Insecticide Resistance Action Committee (2014) [Online] Available: http://www.irac-online.org/pests/cydia-pomonella/
  26. Ioriatti C, Tasin M, Charmillot PJ, Reyes M, Sauphanor B (2007) Early detection of resistance to tebufenozide in field populations of Cydia pomonella L.: methods and mechanisms. J Appl Entomol 131(7):453–459CrossRefGoogle Scholar
  27. Keil S, Gu HN, Dorn S (2001) Response of Cydia pomonella to selection on mobility: laboratory evaluation and field verification. Ecol Entomol 26:495–501CrossRefGoogle Scholar
  28. Klassen W (2005) Area-wide integrated pest management and the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 43–76Google Scholar
  29. Kovačević Ž (1952) Applied entomology. In: Agricultural pests, 2nd edn. University of Zagreb, ZagrebGoogle Scholar
  30. Krafsur ES (2005) Role of population genetics in the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 389–406Google Scholar
  31. Lacey LA, Unruh TR (2005) Biological control of codling moth (Cydia pomonella, Lepidoptera: Tortricidae) and its role in integrated pest management, with emphasis on entomopathogens. Vedalia 12(1):33–60Google Scholar
  32. Lacey LA, Arthurs SP, Thomson D, Fritts RJ, Granatstein D (2004) Codling moth granulovirus and insect specific nematodes for control of codling moth in the Pacific Northwest. Tilth Prod Q 13:10–12Google Scholar
  33. Lacey LA, Tomson D, Vincent C, Arthurs SP (2008) Codling moth granulovirus: a comprehensive review. Biocontrol Sci Tech 18(7):639–663CrossRefGoogle Scholar
  34. Laurent P (1997) Codling moth notes I. To know the codling moth better. Fruit-Belge 65:33–36Google Scholar
  35. Li YT, Duan XL, Qiao XF, Li XY, Wang K, Men QL, Chen MH (2015) Mitochondrial DNA revealed the extent of genetic diversity and invasion origin of populations from two separate invaded areas of a newly invasive pest, Cydia pomonella (L.) (Lepidoptera: Tortricidae) in China. Bull Entomol Res. Available on CJO2015. doi: 10.1017/S0007485315000334
  36. Lin W, Lin CJ (1996) The function of the ecology index in the geographical distribution of codling moth. Plant Quarantine 1:1–7Google Scholar
  37. Liu W, Xu J, Zhang RZ (2012) Advances in the sterile insect technique for controlling codling moth. Chin J Appl Entomol 49(1):268–274Google Scholar
  38. Maceljski M (2002) Poljoprivredna entomologija, 2nd edn. Zrinski, ČakovecGoogle Scholar
  39. Mani E, Wildbolz T (1977) The dispersal of male codling moths (Laspeyresia pomonella L.) in the Upper Rhine Valley. J Appl Entomol 47:39–48Google Scholar
  40. Men QL, Chen MH, Zhang YL, Feng JN (2013) Genetic structure and diversity of a newly invasive species, the codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae) in China. Biol Invasions 15(2):447–458CrossRefGoogle Scholar
  41. Meraner A, Brandstätter A, Thaler R, Aray B, Unterlechner M, Niederstätter H, Parson W, Zelger R, Dalla Via J, Dallinger R (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Mol Phylogenet Evol 48:825–837CrossRefPubMedGoogle Scholar
  42. Miller NJ, Birley AJ, Overall ADJ, Tatchell GM (2003) Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity 91(3):217–223CrossRefPubMedGoogle Scholar
  43. Mota-Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM (2008) Resistance of codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci 64(9):881–890CrossRefPubMedGoogle Scholar
  44. Nangong ZY, Song P, Wang YJ, Wang QY (2014) Advances in the research and application of biological control of the codling moth, Cydiapomonella (Lepidoptera: Tortricidae). Chin J Biol Control 30(2):260–265Google Scholar
  45. Qin XH, Ma DC, Zhang Y, Li GH, Wang P (2006) The damage and development of Cydia pomonella in the northwest of China. Plant Quarantine 2:95–96Google Scholar
  46. Ramstad KM, Woody CA, Sage GK, Allendorf FW (2004) Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska. Mol Ecol 13(2):277–290CrossRefPubMedGoogle Scholar
  47. Reyes M, Sauphanor B (2008) Resistance monitoring in codling moth: a need for standardization. Pest Manag Sci 64(9):945–953CrossRefPubMedGoogle Scholar
  48. Reyes M, Bouvier JC, Boivin T, Sauphanor B, Fuentes CE (2004) Susceptibilidad a insecticidas y actividad enzimática en Cydia pomonella L. (Lepidoptera: Tortricidae) proveniente de tres huertos de manzano de la regi´ on del Maule, Chile. Agricultura T’ecnica 64:229–237Google Scholar
  49. Reyes M, Franck P, Olivares J, Margaritopoulos J, Knight A, Sauphanor B (2009) Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Bull Entomol Res 99(4):359–369CrossRefPubMedGoogle Scholar
  50. Rodríguez MA, Bosch D, Sauphanor B, Avilla J (2010) Susceptibility to organophosphate insecticides and activity of detoxifying enzymes in Spanish populations of Cydia pomonella (Lepidoptera: Tortricidae). J Econ Entomol 103(2):482–491CrossRefPubMedGoogle Scholar
  51. Sauphanor B, Bouvier JC, Brosse V (1998) Spectrum of insecticide resistance in Cydia pomonella (Lepidoptera: Tortricidae) in south-eastern France. J Econ Entomol 91:1225–1231CrossRefGoogle Scholar
  52. Schmitt A, Bisutti IL, Ladurner E, Benuzzi M, Sauphanor B, Kienzle J, Jehle JA (2013) The occurrence and distribution of resistance of codling moth to Cydia pomonella granulovirus in Europe. J Appl Entomol 137(9):641–649CrossRefGoogle Scholar
  53. Shen JR, Liu WX, Wan FH, Zhang FQ (2012) Characterization of the Cydia pomonella granulovirus CpGV-CJ01 from northwest China. Chin J Appl Entomol 49(1):96–103Google Scholar
  54. Stara J, Kocourek F (2007) Insecticidal resistance and cross-resistance in populations of Cydia pomonella (Lepidoptera: Tortricidae) in Central Europe. J Econ Entomol 100(5):1587–1595CrossRefPubMedGoogle Scholar
  55. Thaler R, Brandstätter MA, Chabicovski M, Parson M, Zelger R, Dalla Via J, Dallinger R (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Mol Phylogenet Evol 48(3):838–849CrossRefPubMedGoogle Scholar
  56. Thwaite WG, Williams DG, Hately AM (1993) Extent and significance of azinphos-methyl resistance in codling moth in Australia. Pest Control Sustain Agric 93:166–168Google Scholar
  57. Timm AE, Geertsema H, Warnich L (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. J Econ Entomol 99(2):341–348CrossRefPubMedGoogle Scholar
  58. Vreysen MJB, Carpenter JE, Marec F (2010) Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application. J Appl Entomol 134(3):165–181CrossRefGoogle Scholar
  59. Wan FH, Zheng XB, Guo JY (2005) Biology and management of invasive alien species in agriculture and forestry. Science Press, BeijingGoogle Scholar
  60. Wang CL, Wang FX (2009) Advances in interception and control of the codling moth. Plant Prot 35(2):102–103Google Scholar
  61. Watts PC, Keat S, Thompson DJ (2010) Patterns of spatial genetic structure and diversity at the onset of a rapid range expansion: colonization of the UK by the small red-eyed damselfly Erythromma viridulum. Biol Invasions 12:3887–3903CrossRefGoogle Scholar
  62. Willett MJ, Neven L, Miller CE (2009) The occurrence of codling moth in low latitude countries: validation of pest distribution reports. HortTechnology 19(3):633–637Google Scholar
  63. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefPubMedGoogle Scholar
  64. Yan F, Bengtsson M, Witzgall P (1999) Behavioral response of female Codling Moths, Cydia Pomonella, to apple volatiles. J Chem Ecol 25(6):1343–1351CrossRefGoogle Scholar
  65. Yang R (2008) Study on the habitat suitability of Cydia pomonella (L.) in China. Ph. D thesis. Yangling, Northwest A&F UniversityGoogle Scholar
  66. Yang JQ, Zhao R, Yan YG, Zhang YL, Feng JN (2011) Efficacy of seven kinds of pesticides for controlling codling moth Cydia pomonella. Acta Agric Boreali-occidentalis Sinica 20(9):194–196Google Scholar
  67. Zhang XZ (1957) The first record of Cydia pomonella in China. Acta Entomol Sin 4:467–472Google Scholar
  68. Zhang RZ, Kang L (1999) The disaster mechanism and control strategy of the invasive pests. Entomol Knowl 36(3):181–183Google Scholar
  69. Zhang RZ, Wang FX, Zhang YL, Chen HJ, Luo JC, Wang QY, Liu WX, Ainiwaer M, Pu CJ, Yan YG, Guo JM, Liu XY, Chen JG, Zhang ZF, Yang S, Xu JJ, Cui GZ, Xu J (2012) Progress on monitoring and control of the codling moth, Cydia pomonella (L.). Chin J Appl Entomol 49(1):37–42Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Maohua Chen
    • 1
    Email author
  • Xinle Duan
    • 1
  • Yuting Li
    • 1
  • Qiulei Men
    • 1
  • Fanghao Wan
    • 2
  1. 1.College of Plant Protection, Northwest A&F University, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of AgricultureYanglingChina
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations