Red Palm Weevil Rhynchophorus ferrugineus (Olivier)

  • Lu Peng
  • Youming HouEmail author
Part of the Invading Nature - Springer Series in Invasion Ecology book series (INNA, volume 11)


The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera, Curculionidae) is the most destructive pest of palm trees worldwide. RPW can potentially spread to all palm-growing areas in China, mainly ranging across much of South, East, and Southwest areas and causing severe economic loss. Here, we introduce the current distribution of RPW in China, discuss the invasive mechanisms, including thermal adaptability, host adaptability, immune response, and population genetic differentiation, and summarize the frequently-used prevention and control strategies in China, with chemical controls accompanied by trapping are the dominated measures. We aim to summarize research progress in the past several decades in RPW and to provide sound prospects for improving the strategies and tactics currently employed in ecologically-based pest management in China. In addition, further studies will carry out from two aspects of prevention and control, mainly focus on building the early observing and monitoring system, better elucidating invasive mechanisms, as well as developing the new techniques for pest management, such as genetic and behavior regulation, biological pesticides screening, and natural enemies release.


Rhynchophorus ferrugineus Distribution Damage Invasive mechanisms Pest management 


  1. Abuagla AM, Al-Deeb MA (2012) Effect of bait quantity and trap color on the trapping efficacy of the pheromone trap for the red palm weevil, Rhynchophorus ferrugineus. J Insect Sci 12:120CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bali GK, Kaur S (2013) Phenoloxidase activity in haemolymph of Spodoptera litura (Fabricius) mediating immune responses challenge with entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillmin. J Entomol Zool Stud 1(6):118–123Google Scholar
  3. Chakravarthy AK, Chandrashekharaiah M, Kandakoor SB, Nagaraj DN (2014) Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms. J Environ Biol 35:479–484PubMedGoogle Scholar
  4. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19CrossRefPubMedGoogle Scholar
  5. Dembilio Ó, Jacas JA (2011) Basic bio-ecological parameters of the invasive red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Phoenix canariensis under Mediterranean climate. Bull Entomol Res 101:153–163CrossRefPubMedGoogle Scholar
  6. Dembilio Ó, Tapia GV, Téllez MM, Jacas JA (2012) Lower temperature thresholds for oviposition and egg hatching of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in a Mediterranean climate. Bull Entomol Res 102:97–102CrossRefPubMedGoogle Scholar
  7. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  8. El-Mergawy RAAM, Nasr MI, Abdallah N, Silvain JF (2011) Mitochondrial genetic variation and invasion history of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Middle-East and Mediterranean Basin. Int J Agric Biol 13:631–637Google Scholar
  9. El-Shafie HAF, Faleiro JR, Al-Abbad AH, Stoltman L, Mafra-Neto A (2011) Bait-Free attract and kill technology (Hook™ RPW) to suppress red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date palm. Fla Entomol 94:774–778CrossRefGoogle Scholar
  10. EPPO (2008) Data sheet on quarantine pests: Rhynchophorus ferrugineus. EPPO Bull 38:55–59CrossRefGoogle Scholar
  11. Faghih AA (1996) The biology of red palm weevil, Rhynchophorus ferrugineus Oliv (Coleopter, Curculionidae) in Savaran region (Sistan province, Iran). Appl Entomol Phytopathol 63:16–18Google Scholar
  12. Faleiro JR (2006) A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci 26(3):135–154Google Scholar
  13. Fand BB, Sul NT, Bal SK, Minhas PS (2015) Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One 10:e0124682CrossRefPubMedPubMedCentralGoogle Scholar
  14. Feng Y, Liu H (2010) Potential suitability analysis of Rhychophorus ferrugineus (Olvier) in China based on Maxtent and GIS. J Huazhong Agric Univ 29(5):552–556. (in Chinese)Google Scholar
  15. Ficetola GF, Bonin A, Miaud C (2008) Population genetics reveals origin and number of founders in a biological invasion. Mol Ecol 17:773–782CrossRefPubMedGoogle Scholar
  16. Francardi V, Benvenuti C, Roversi PF, Rumine P, Barzanti G (2012) Entomopathogenicity of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorokin isolated from different sources in the control of Rhynchophorus ferrugineus (Olivier) (Coleoptera Curculionidae). Redia 95:49–55Google Scholar
  17. Francardi V, Benvenuti C, Barzanti GP, Roversi PF (2013) Autocontamination trap with entomopathogenic fungi: a possible strategy in the control of Rhynchophorus ferrugineus (Olivier) (Coleoptera Curculionidae). Redia 96:57–67Google Scholar
  18. Ge X, He S, Wang T, Yan W, Zong S (2015) Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE 10:e0141111CrossRefPubMedPubMedCentralGoogle Scholar
  19. Giblin-Davis RM, Faleiro JR, Jacas JA, Peña JE, Vidyasagar PSPV (2013) Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In: Peña JE (ed) Potential invasive pests of agricultural crops. CAB International, Wallingford, pp 1–34CrossRefGoogle Scholar
  20. Guarino S, Lo Bue P, Peri E, Colazza S (2011) Responses of Rhynchophorus ferrugineus adults to selected synthetic palm esters: electroantennographic studies and trap catches in an urban environment. Pest Manag Sci 67:77–81CrossRefPubMedGoogle Scholar
  21. Hajjar MJ, Ajlan AM, Al-Ahmad MH (2015) New approach of Beauveria bassiana to control the red palm weevil (Coleoptera: Curculionidae) by trapping technique. J Econ Entomol 108(2):425–432CrossRefPubMedGoogle Scholar
  22. Hou YM, Wu ZJ, Wang CF (2011) The status and harm of invasive insects in Fujian, China. In: Xie LH, You MS, Hou YM (eds) Biological invasions: problems and countermeasures. Sci Press, Beijing, pp 121–122. (in Chinese)Google Scholar
  23. Huang SC, Li CX, Yan W, Liu L, Qin WQ (2011) Preparation and application of new-type trapper for Rhynchophorus ferrugineus. Acta Agric Jiangxi 23(9):86–87. (in Chinese)Google Scholar
  24. Jia SG, Zhang XW, Zhang GY, Yin A, Zhang S, Li FS, Wang L, Zhao DJ, Yun QZ, Tala, Wang JX, Sun GY, Baabdullah M, Yu XG, Hu SN, Al-Mssallem IS, Yu J (2013) Seasonally variable intestinal metagenomes of the red palm weevil (Rhynchophorus ferrugineus). Environ Microbiol 15(11):3020–3029PubMedPubMedCentralGoogle Scholar
  25. Ju RT, Li YZ, Du YZ, Chi XZ, Yan W, Xu Y (2006) Alert to the spread of alien invasive pest, red palm weevil, Rhynchophorus ferrugineus (Oliver). Chin Bull Entomol 43:159–163. (in Chinese)Google Scholar
  26. Ju RT, Wang F, Wan FH, Li B (2011) Effect of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). J Pest Sci 84:33–39CrossRefGoogle Scholar
  27. Lefroy HM (1906) The more important insects injurious to indian agriculture. Gov India Press, CalcuttaGoogle Scholar
  28. Li L, Qin WQ, Ma ZL, Yan W, Huang SC, Peng ZQ (2010) Effect of temperature on the population growth of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) on Sugarcane. Environ Entomol 39(3):999–1003Google Scholar
  29. Liu L, Yan W, Wei J, Huang SC, Zhang J, Qin WQ, Cao JH, Peng ZQ (2011) Chemical control of Rhynchophorus ferrugineus larvae. Chin J Trop Crops 32(8):1545–1548. (in Chinese)Google Scholar
  30. Montagna M, Chouaia B, Mazza G, Prosdocimi EM, Crotti E, Mereghetti V et al (2015) Effects of the diet on the microbiota of the 空格 red palm weevil (Coleoptera: Dryophthoridae). PLoS ONE 10(1):e0117439CrossRefPubMedPubMedCentralGoogle Scholar
  31. Olson JF, Eaton M, Kells SA, Morin V, Wang C (2013) Cold tolerance of bed bugs and practical recommendations for control. J Econ Entomol 106:2433–2441CrossRefPubMedGoogle Scholar
  32. Ou SS, Xie EB, Xie YJ, Wang XX, Qin LH, Shen XP (2009) Study on control effects of different medicament on Rhynchophorus ferrugineus Fabricius. J Anhui Agric Sci 37(36):18005–18006. (in Chinese)Google Scholar
  33. Parmakelis A, Slotman MA, Marshall JC, Awono-Ambene PH, Nkondjio CA, Simard F, Caccone S, Powell J (2008) The molecular evolution of four antimalarial immune genes in the Anopheles gambiae species complex. BMC Evol Biol 8:68–79CrossRefGoogle Scholar
  34. Pu YC, Hou YM (2016) Isolation and identification of bacterial strains with insecticidal activities from Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). Journal of Applied Entomology, 140: 10.1111/jen.12293Google Scholar
  35. Qin WQ, Li CX, Huang SC (2009) Risk analysis of Rynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in China. Acta Agric Jiangxi 21(9):79–82. (in Chinese)Google Scholar
  36. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J (2009) Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc R Soc Lond Ser B 276:145–151CrossRefGoogle Scholar
  37. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, Kurtz J (2010) Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. J Anim Ecol 79:403–413CrossRefPubMedGoogle Scholar
  38. Rugman-Jones PF, Hoddle CD, Hoddle MS, Stouthamer R (2013) The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE 8:e78379CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shi ZH, Sun JH (2010) Immunocompetence of the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae, 空格 Scolytinae): variation between developmental stages and sexes in populations in China. J Insect Physiol 56:1696–1701CrossRefPubMedGoogle Scholar
  40. Shi ZH, Lin YT, Hou YM (2014) Mother-derived trans-generational immune priming in the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera, Dryophthoridae). Bull Entomol Res 104:742–750CrossRefPubMedGoogle Scholar
  41. Trauer U, Hilker M (2013) Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLoS ONE 8:e63392CrossRefPubMedPubMedCentralGoogle Scholar
  42. Urbański A, Czarniewska E, Baraniak E, Rosiński G (2014) Developmental changes in cellular and humoral responses of the burying beetle Nicrophorus vespilloides (Coleoptera, Silphidae). J Insect Physiol 60:98–103CrossRefPubMedGoogle Scholar
  43. Vacas S, Primo J, Navarro-Llopis V (2013) Advances in the use of trapping systems for Rhynchophorus ferrugineus (Coleoptera: Curculionidae): traps and attractants. J Econ Entomol 106:1739–1746CrossRefPubMedGoogle Scholar
  44. Wang Y (2007) Forest pests and diseases of Shanghai. Shanghai Sci Tech Publishers, Shanghai, p3. (in Chinese)Google Scholar
  45. Wang L, Zhang XW, Pan LL, Liu WF, Wang DP, Zhang GY, Yin YX, Yin A, Jia SG, Yu XG, Sun GY, Hu SN, Al-Mssallem IS, Yu J (2013) A large-scale gene discovery for the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Instr Sci 20:689–702Google Scholar
  46. Wang GH, Zhang X, Hou YM, Tang BZ (2015) Analysis of the population genetic structure of Rhynchophorus ferrugineus in Fujian, China, revealed by microsatellite loci and mitochondrial COI sequences. Entomol Exp et Applicata 155:28–38CrossRefGoogle Scholar
  47. Wu YS, Dong DZ, Liu DM, Wu GC, Feng RH (1998) Preliminary survey report of the occurrence of Rhynchophorus ferrugineus (Olivier) on Palm plants. Guangdong Landscape Architecture 1:38. (in Chinese)Google Scholar
  48. Yan W, Liu L, Huang SC, Zhang J, Qin WQ, Cao JH, Peng ZQ (2011) Application of stepwise regression analysis in predicting red palm weeril (Rhynchophorus ferrugineus) movement. Chin J Trop Crops 32(8):1549–1552. (in Chinese)Google Scholar
  49. Yin A, Pan L, Zhang X, Wang L, Yin Y, Jia S, Liu W, Xin C, Liu K, Yu X, Sun G, Al-hudaib K, Hu S, Al-Mssallem IS, Yu J (2015) Transcriptomic study of the red palm weevil Rhynchophorus ferrugineus embryogenesis. Instr Sci 22:65–82Google Scholar
  50. Yue F, Zhou Z, Wang LL, Ma ZP, Wang JJ, Wang MQ, Zhang H, Song LS (2013) Maternal transfer of immunity in scallop Chlamys farreri and its trans-generational immune protection to offspring against bacterial challenge. Dev Comp Immunol 41:569–577CrossRefPubMedGoogle Scholar
  51. Zanchi C, Troussard J, Martinaud G, Moreau J, Moret Y (2011) Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. J Anim Ecol 80:1174–1183CrossRefPubMedGoogle Scholar
  52. Zhang YF, Tang GL, Wang L, Pei ZW, Tang LF (2008) Bionomics and control of Rhynchophorus ferrugineus. Forest Pest Disease 27:12–13. (in Chinese)Google Scholar
  53. Zhang J, Qin WQ, Yan W, Peng ZQ (2011) Isolation and identification of a pathogenic strain of Rhynchophorus ferrugineus Oliver. Chin J Trop Crops 32(11):2331–2335. (in Chinese)Google Scholar
  54. Zhang J, Qin WQ, Yan W, Peng ZQ (2012) Detection of pathogenicity of Meatarhiziums against Rhynchophorus ferrugineus in laboratory. Chin J Trop Crops 33(5):899–905. (in Chinese)Google Scholar
  55. Zhao M, Ju RT (2010) Effects of temperature on the development and fecundity of experimental population of Rhychophorus ferrugineus. Acta Phys Sin 37(6):517–521. (in Chinese)Google Scholar
  56. Zhou ZS, Guo JY, Chen HS, Wan FH (2010) Effects of temperature on survival, development, longevity and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a biological control agent against invasive ragweed, Ambrosia artemisiifolia L. (Asterales: Asteraceae). Environ Entomol 39:1021–1027CrossRefPubMedGoogle Scholar
  57. Zhu H, Qin WQ, Huang SC, Yan W, Sun XD (2010) Isolation and identification of an entomopathogenic fungus strain of Rhynchophorus ferrugineus Oliver. Acta Phys Sin 37(4):336–340. (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Provincial Key Laboratory of Insect EcologyFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations