Ablonczy Z, Higbee D, Anderson DM, Dahrouj M, Grey AC, Gutierrez D, Koutalos Y, Schey KL, Hanneken A, Crouch RK (2013) Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 54:5535–5542
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Adler AJ, Evans CD, Stafford WF III (1985) Molecular properties of bovine interphotoreceptor retinol-binding protein. J Biol Chem 260:4850–4855
CAS
PubMed
Google Scholar
Adler L, Chen C, Koutalos Y (2014) Mitochondria contribute to NADPH generation in mouse rod photoreceptors. J Biol Chem 289:1519–1528
CAS
PubMed
CrossRef
Google Scholar
Ala-Laurila P, Kolesnikov AV, Crouch RK, Tsina E, Shukolyukov SA, Govardovskii VI, Koutalos Y, Wiggert B, Estevez ME, Cornwall MC (2006) Visual cycle: dependence of retinol production and removal on photoproduct decay and cell morphology. J Gen Physiol 128:153–169
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ala-Laurila P, Cornwall MC, Crouch RK, Kono M (2009) The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. J Biol Chem 284:16492–16500
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Alpern M (1971) Rhodopsin kinetics in the human eye. J Physiol 217:447–471
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Altman J (1985) New visions in photoreception. Nature 313:264–265
CrossRef
Google Scholar
Barry RJ, Canada FJ, Rando RR (1989) Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium. J Biol Chem 264:9231–9238
CAS
PubMed
Google Scholar
Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–53979
CAS
PubMed
CrossRef
Google Scholar
Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A, Chiodo VA, Fajardo DS, Román AJ, Deng W-T, Swider M, Alemán TS, Boye SL, Genini S, Swaroop A, Hauswirth WW, Jacobson SG, Aguirre GD (2012) Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 109:2132–2137
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bernstein PS, Rando RR (1986) In vivo isomerization of all-trans- to 11-cis-retinoids in the eye occurs at the alcohol oxidation state. Biochemistry 25:6473–6478
CAS
PubMed
CrossRef
Google Scholar
Bernstein PS, Law WC, Rando RR (1987) Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc Natl Acad Sci U S A 84:1849–1853
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bok D, Ong DE, Chytil F (1984) Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest Ophthalmol Vis Sci 25:877–883
CAS
PubMed
Google Scholar
Boll F (1876–1877) Zur anatomie und physiologie der retina. Verhandlungen der R Accademia dei Lincei, Dritte Serie, Erster Theil, English translation by Hubbard On the anatomy and physiology of the retina. Vision Res. 1977, 17:1249–1265
Google Scholar
Bownds D, Wald G (1965) Reaction of the rhodopsin chromophore with sodium borohydride. Nature 205:254–257
CAS
PubMed
CrossRef
Google Scholar
Bunt-Milam AH, Saari JC (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol 97:703–712
CAS
PubMed
CrossRef
Google Scholar
Burstedt MS, Forsman-Semb K, Golovleva I, Janunger T, Wachtmeister L, Sandgren O (2001) Ocular phenotype of bothnia dystrophy, an autosomal recessive retinitis pigmentosa associated with an R234W mutation in the RLBP1 gene. Arch Ophthalmol 119:260–267
CAS
PubMed
Google Scholar
Chen Y, Saari JC, Noy N (1993) Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry 32:11311–11318
CAS
PubMed
CrossRef
Google Scholar
Chen P, Hao W, Rife L, Wang XP, Shen D, Chen J, Ogden T, Van Boemel GB, Wu L, Yang M, Fong HK (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 28:256–269
CAS
PubMed
CrossRef
Google Scholar
Chen C, Tsina E, Cornwall MC, Crouch RK, Vijayaraghavan S, Koutalos Y (2005) Reduction of all-trans-retinal to all-trans-retinol in the outer segments of frog and mouse rod photoreceptors. Biophys J 88:2278–2287
CAS
PubMed
CrossRef
Google Scholar
Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K (2012) Mechanisms of all-trans-retinal toxicity with implications for Stargardt disease and age-related macular degeneration. J Biol Chem 287:5059–5069
CAS
PubMed
CrossRef
Google Scholar
Collery R, McLoughlin S, Vendrell V, Finnegan J, Crabb JW, Saari JC, Kennedy BN (2008) Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Müller-CRALBP in cone vision. Invest Ophthalmol Vis Sci 49:3812–3820
PubMed
CrossRef
Google Scholar
Crescitelli F (1984) The gecko visual pigment: the dark exchange of chromophore. Vis Res 24:1551–1553
CAS
PubMed
CrossRef
Google Scholar
Danciger M, Matthes MT, Yasamura D, Akhmedov NB, Rickabaugh T, Gentleman S, Redmond RM, La Vail MM, Farber DB (2000) A QTL on distal chromosome 3 that influences the severity of light-induced damage to mouse photoreceptors. Mamm Genome 11:422–427
CAS
PubMed
CrossRef
Google Scholar
Das SR, Bhardwau N, Kjeldbye H, Gouras P (1992) Müller cells of chicken retina synthesize 11-cis-retinol. Biochem J 285:907–913
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dowling JE (1960) Chemistry of visual adaptation in the rat. Nature 188:114118
CrossRef
Google Scholar
Dowling JE, Wald G (1958) Vitamin A deficiency and night blindness. Proc Natl Acad Sci U S A 44:648–661
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Duffy M, Sun Y, Wiggert B, Duncan T, Chader GJ, Ripps H (1993) Interphotoreceptor retinoid binding protein (IRBP) enhances rhodopsin regeneration in the experimentally detached retina. Exp Eye Res 57:771–782
CAS
PubMed
CrossRef
Google Scholar
Edwards RB, Adler AJ (2000) IRBP enhances removal of 11-cis-retinaldehyde from isolated RPE membranes. Exp Eye Res 70:235–245
CAS
PubMed
CrossRef
Google Scholar
Fain GL (2006) Why photoreceptors die (and why they don’t). BioEssays 28:344–354
CAS
PubMed
CrossRef
Google Scholar
Farjo KM, Moiseyev G, Takahashi Y, Crouch RK, Ma JX (2009) The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Invest Ophthalmol Vis Sci 50:5089–5097
PubMed
CrossRef
Google Scholar
Fischer EH, Kent AB, Snyder ER, Krebs EG (1958) The reaction of sodium borohydride with muscle phosphorylase. J Am Chem Soc 80:2906
CAS
CrossRef
Google Scholar
Fishkin N, Yefidoff R, Gollipalli DR, Rando RR (2005) On the mechanism of isomerization of all-trans-retinol to 11-cis-retinol in retinal pigment epithelial cells: 11-fluoro-all-trans-retinol as substrate/inhibitor in the visual cycle. Bioorg Med Chem 13:5189–5194
CAS
PubMed
CrossRef
Google Scholar
Fishkin NE, Sparrow JR, Allikmets R, Nakanishi K (2005) Isolation and characterization of a retinal pigment epithelial cell fluorophore: An all-trans-retinal dimer conjugate. Proc Natl Acad Sci U S A 102:7091–7096
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC (2008) Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J Neurosci 28:8208–8216
CAS
PubMed
CrossRef
Google Scholar
Gallego O, Belyaeva OV, Porté S, Ruiz FX, Stetsneko AV, Shabrova EV, Kostereva NV, Farrés J, Pares X, Kedishvili NY (2006) Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochem J 399:101–109
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gearhart PM, Gearhart G, Thompson DH, Petersen-Jones SM (2010) Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. Arch Ophthalmol 128:1442–1448
CAS
PubMed
CrossRef
Google Scholar
Golczak M, Kuksa V, Maeda T, Moise AR, Palczewski K (2005) Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proc Natl Acad Sci U S A 102:8162–8167
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Goldstein EM, Wolk BM (1973) Regeneration of the green-rod pigment in the isolated frog retina. Vis Res 13:527–534
CAS
PubMed
CrossRef
Google Scholar
Golobokova EY (2006) Govardovskii VI Late stages of visual pigment photolysis in situ: cones vs. rods. Vis Res 46:2287–2297
PubMed
CrossRef
Google Scholar
Gonzalez-Fernandez F, Gosh D (2008) Focus on molecules: interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 86:169–170
CAS
PubMed
CrossRef
Google Scholar
Gonzalez-Fernandez F, Sung D, Haswell KM, Tsin A, Ghosh D (2014) Thiol-dependent antioxidant activity of interphororeceptor retinoid-binding protein. Exp Eye Res 129:167–174
CrossRef
CAS
Google Scholar
Gu X, Crabb JS, Nawrot M, Saari JC, Crabb JW (2006) Quantitative mass spectrophometric analysis of visual cycle protein interactions. In: Proceedings of the 54 ASMS conference on mass spectrometry and allied topics. Seattle, May 28–June 1, 2006, Abstr citation no. A063296
Google Scholar
Haeseleer F, Jang G-F, Imanishi Y, Driessen CAGG, Matsumura M, Nelson PS, Palczewski K (2002) Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 277:45537–45546
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hao W, Fong HK (1999) The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem 274:6085–6090
CAS
PubMed
CrossRef
Google Scholar
He X, Lobsiger J, Stocker A (2009) Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc Natl Acad Sci U S A 44:18545–18550
CrossRef
Google Scholar
Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428
CAS
PubMed
CrossRef
Google Scholar
Ho M-TP, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem 24:928–935
Google Scholar
Hollyfield JG, Fliesler SJ, Rayborn ME, Fong S-L, Landers RA, Bridges CD (1985) Synthesis and secretion of interstitial retinol-binding protein by the human retina. Invest Ophthalmol Vis Sci 26:58–67
CAS
PubMed
Google Scholar
Holz FG, Bellman C, Staudt S, Schütt F, Völcker HE (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056
CAS
PubMed
Google Scholar
Huang J, Possin DE, Saari JC (2009) Localizations of visual cycle components in retinal pigment epithelium. Mol Vis 15:223–234
CAS
PubMed
PubMed Central
Google Scholar
Hubbard R, Wald G (1952) Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol 36:269–315
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Illing M, Molday LL, Molday RS (1997) The 220 kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310
CAS
PubMed
CrossRef
Google Scholar
Imanishi Y, Palczewski K (2010) Visualization of retinoid storage and trafficking by two-photon microscopy. Methods Mol Biol 652:247–261
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Imanishi Y, Batten ML, Piston DW, Baehr W, Palczewski K (2004) Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J Cell Biol 164:373–383
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Insinna C, Daniele LL, Davis JA, Larsen DD, Kuemmel C, Wang J, Nikonov SS, Knox BE, Pugh EN Jr (2012) An S-opsin knock-in mouse (P81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. J Neurosci 32:8094–8104
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Isler O (1977) Progress in the field of fat-soluble vitamins and carotenoids. Experientia 33:555–573
CAS
PubMed
CrossRef
Google Scholar
Jacobs GH (2008) Primate color vision: a comparative perspective. Vis Neurosci 25:619–633
PubMed
CrossRef
Google Scholar
Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449–459
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jin M, Li S, Nusinowitz S, Lloyd M, Hu J, Radu RA, Bok D, Travis GH (2009) The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. J Neurosci 29:1486–1495
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jones GJ, Crouch RK, Wiggert B, Cornwall MC, Chader GJ (1989) Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc Natl Acad Sci U S A 86:9606–9610
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Karrer P, Morf R, Schöpp K (1931) Zur kenntnis des vitamins A aus fischtranen. Helv Chim Acta 14:1431–1436, 1036–1040
CAS
CrossRef
Google Scholar
Kaufman Y, Ma L, Washington I (2011) Deuterium enrichment of vitamin A at the C20 position slows the formation of deterimental vitamin A dimers in wild-type rodents. J Biol Chem 286:7958–7965
CAS
PubMed
CrossRef
Google Scholar
Kaupp UB, Koch K-W (1986) Mechanism of photoreception in vertebrate vision. Trends in Biochem Sci (TIBS) 11:43–47
CAS
CrossRef
Google Scholar
Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825
CAS
PubMed
CrossRef
Google Scholar
Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH (2013) Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 9:30–36
CAS
PubMed
CrossRef
Google Scholar
Kaylor JJ, Cook JD, Makshanoff J, Bischoff N, Yong J, Travis GH (2014) Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 111:7302–7307
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kefalov VJ (2012) Rod and cone visual pigments and phototransduction through pharmacological, genetic, and phpysiological approaches. J Biol Chem 287:1635–1641
CAS
PubMed
CrossRef
Google Scholar
Kefalov VJ, Estevez ME, Kono M, Goletz PW, Crouch RK, Cornwall MC, Yau K-W (2005) Breaking the covalent bond-A pigment property that contributes to desensitization in cones. Neuron 46:879–890
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kiser PD, Golczak M, Maeda A, Palczewski K (2012) Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta 1821:137–151
CAS
PubMed
CrossRef
Google Scholar
Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232
CAS
PubMed
CrossRef
Google Scholar
Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D (2012) Safety and effect on rod function of ACU-4429, a novel small molecule visual cycle modulator. Retina 32:183–188
PubMed
CrossRef
Google Scholar
Kühne W (1879) Chemische vorgänge in der netzhaut. In: Hofmann L (ed) Handbuch der Physiology, vol 3, part 1. Leipzig, FCW Vogel. English translation by Hubbard and Wald, Chemical processes in the retina. Vision Res 1977,17:1269–1316
Google Scholar
Kumar S, Sandell LL, Trainor PA, Koentgen F, Duester G (2012) Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochim Biophys Acta 1821:198–205
CAS
PubMed
CrossRef
Google Scholar
Lai YL, Wiggert B, Liu YP, Chader GJ (1982) Interphotoreceptor retinol-binding protein: possible transport vehicles between compartments of the retina. Nature 298:848–849
CAS
PubMed
CrossRef
Google Scholar
Lamb TD, Pugh EN Jr (2004) Dark adaptation and the retinoid cycle of vision. Prog Retinal Eye Res 23:307–380
CAS
CrossRef
Google Scholar
Lamb TD, Pugh EN Jr (2006) Phototransduction, dark adaptation, and rhodopsin regeneration. The proctor lecture. Invest Ophthalmol Vis Sci 47:5138–5152
CrossRef
Google Scholar
Lanska DJ (2010) Chapter 29. Historical aspects of the major neurological vitamin deficiency disorders: overview and fat-soluble A. Handb Clin Neurol 95:435–444
PubMed
CrossRef
Google Scholar
Lee KA, Nawrot M, Garwin GG, Saari JC, Hurley JB (2010) Relationships among visual cycle retinoids, rhodopsin phosphorylation, and phototransduction in mouse eyes during light and dark adaptation. Biochemistry 49:2454–2463
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Li S, Yang Z, Hu J, Gordon WC, Bazan NG, Haas AL, Bok D, Jin M (2013) Secretory defect and cytotoxicity: the potential disease mechanisms for the retinitis pigmentosa (RP)-associated interphotoreceptor retinoid-binding protein (IRBP). J Biol Chem 288:11395–11406
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. Lancet 379:1728–1738
PubMed
CrossRef
Google Scholar
Liou GI, Bridges CDB, Fong S-L, Alvarez RA, Gonzalez-Fernandez F (1982) Vitamin A transport between retina and pigment epithelium – an interstitial protein carrying endogenous retinol (interstitial retinol-binding protein). Vis Res 22:1457–1467
CAS
PubMed
CrossRef
Google Scholar
Lobanova ES, Finkelstein S, Skiba NP, Skiba NP, Arshavsky VY (2013) Proteosome overload is a common stress factor in multiple forms of inherited retinal degeneration. Proc Natl Acad Sci U S A 110:9986–9991
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ma L, Kaufman Y, Zhang J, Washington I (2011) C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem 286:7966–7974
CAS
PubMed
CrossRef
Google Scholar
Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Maeda A, Golczak M, Chen Y, Okano K, Kohno H, Shiose S, Ishikawa K, Harte W, Placzewska G, Maeda T, Palczewski K (2012) Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat Chem Biol 8:170–178
CAS
CrossRef
Google Scholar
Maeda T, Dong Z, Jin H, Sawada O, Gao S, Utkhede D, Monk W, Palczewska G, Palczewski K (2013) QLT091001, a 9-cis-retinal analog, is well tolerated by retinas of mice with impaired visual cycles. Invest Ophthalmol Vis Sci 54:455–466
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Maiti P, Kong J, Kim SR, Sparrow JR, Alikmets R, Rando RR (2006) Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 45:852–860
CAS
PubMed
CrossRef
Google Scholar
Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 97:7154–7159
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mata NL, Radu RA, Clemmons RS, Travis GH (2002) Isomerization and oxidation of vitamin A in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36:69–80
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Matsumoto H, Tokunaga F, Yoshizama T (1975) Accessibility of the iodopsin chromophore. Biochim Biophys Acta 404:300–308
CAS
PubMed
CrossRef
Google Scholar
McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity; the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20:469–529
CAS
PubMed
CrossRef
Google Scholar
Mihai DM, Jiang H, Blaner WS, Romanov A, Washington I (2013) The retina rapidly incorporates ingested C20-D3-vitamin A in a swine model. Mol Vis 19:1677–1683
CAS
PubMed
PubMed Central
Google Scholar
Miyazono S, Shimauchi-Matsukawa Y, Tachibanaki S, Kawamura S (2008) Highly efficient retinal metabolism in cones. Proc Natl Acad Sci U S A 105:16051–16056
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102:12414–12418
CrossRef
CAS
Google Scholar
Morton RA, Pitt GAJ (1957) Visual pigments. Fortschr Chem Org Naturst XIV:244–316
Google Scholar
Muniz A, Betts BS, Trevino AR, Buddavarapu K, Roman R, Ma J-X, Tsin TC (2009) Evidence for two retinoid cycles in the cone-dominant chicken eye. Biochemistry 48:6854–6863
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Napoli JL (2012) Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta 1821:152–167
CAS
PubMed
CrossRef
Google Scholar
Nawrot M, West K, Huang J, Possin DE, Bretscher A, Crabb JW, Saari JC (2004) Cellular retinaldehyde-binding protein interacts with ERM-binding phosphoprotein 50 in retinal pigment epithelium. Invest Ophthalmol Vis Sci 45:393–401
PubMed
CrossRef
Google Scholar
Nawrot M, Liu T, Garwin GG, Crabb JW, Saari JC (2006) Scaffold proteins and the regeneration of visual pigments. Photochem Photobiol 82:1482–1488
CAS
PubMed
Google Scholar
Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348:481–495
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Okajima T-IL, Pepperberg DR, Ripps H, Wiggert B, Chader GJ (1989) Interphotoreceptor retinoid-binding protein: role in delivery of retinol to the pigment epithelium. Exp Eye Res 49:629–644
CAS
PubMed
CrossRef
Google Scholar
Oroshnik W, Brown PK, Hubbard R, Wald G (1956) Hindered cis-isomers of vitamin A and retinene: the structure of the neo b-isomer. Proc Natl Acad Sci U S A 42:578–580
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Palczewski K (2010) Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 31:284–295
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619
CAS
PubMed
CrossRef
Google Scholar
Palczewski K, Van Hooser JP, Garwin GG, Chen J, Liou GI, Saari JC (1999) Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin. Biochemistry 38:12012–12019
CAS
PubMed
CrossRef
Google Scholar
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745
CAS
PubMed
CrossRef
Google Scholar
Parker RO, Crouch RK (2010) Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res 91:788–792
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Poliakov E, Parikh T, Ayele M, Kuo S, Chander P, Gentleman S, Redmond TM (2011) Aromatic lipophilic spin traps effectively inhibit RPE65 isomerohydrolase activity. Biochemistry 50:6739–6741
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Posch KC, Boerman MHEM, Burns RD, Napoli JL (1991) Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Biochemistry 30:6224–6230
CAS
PubMed
CrossRef
Google Scholar
Puntel A, Maeda A, Golczak M, Gao S-Q, Yu G, Palczewski K, Lu Z-R (2015) Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials 44:103–110
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Quazi F, Molday RS (2014) ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc Natl Acad Sci U S A 111:5024–5029
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 100:4742–4747
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH (2008) Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem 283:19730–19738
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rando RR (1990) The chemistry of vitamin A and vision. Angew Chem Int Ed Engl 29:461–480
CrossRef
Google Scholar
Rando RR (2001) The biochemistry of the visual cycle. Chem Rev 101:1881–1896
CAS
PubMed
CrossRef
Google Scholar
Rattner A, Smallwood PM, Nathans J (2000) Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem 275:11034–11043
CAS
PubMed
CrossRef
Google Scholar
Redmond TM, Poliakov E, Yu S, Tsai J-Y, Lu Z, Gentleman S (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 102:13658–13663
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Redmond TM, Poliakov E, Kuo S, Chander P, Gentleman S (2010) RPE65, visual cycle retinol isomerase, is not inherently 11-cis-specific: support for a carbocation mechanism of retinol isomerization. J Biol Chem 285:1919–1927
CAS
PubMed
CrossRef
Google Scholar
Ren RF, Sakai N, Nakanishi K (1997) Total synthesis of the ocular age pigment ‘A2E’: a convergent pathway. J Am Chem Soc 119:3619–3620
CAS
CrossRef
Google Scholar
Ripps H, Peachey NS, Xu X, Nozell SE, Smith SB, Liou GI (2000) The rhodopsin cycle is prserved in IRBP “knockout” mice despite abnormalities in retinal structure and function. Vis Neurosci 17:97–105
CAS
PubMed
CrossRef
Google Scholar
Rodieck RW (1998) The first steps in seeing. Sinauer, Sunderland
Google Scholar
Rosenfeld L (1997) Vitamine-vitamin. The early years of discovery. Clin Chem 43:680–685
CAS
PubMed
Google Scholar
Rushton WAH (1965) The ferrier lecture, 1962. Visual adaptation. Proc Roy Soc Lond Series B 162:20–46
CAS
CrossRef
Google Scholar
Saari JC (2012) Vitamin A, metabolism in rod and cone visual cycle. Annu Rev Nutr 32:125–145
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Bredberg L (1982) Enzymatic reduction of 11-cis-retinal bound to cellular retinal-binding protein. Biochim Biophys Acta 716:266–272
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Bredberg DL (1988) CoA- and non-CoA-dependent retinol esterification in retinal pigment epithelium. J Biol Chem 263:8084–8090
CAS
PubMed
Google Scholar
Saari JC, Bredberg DL (1989) Lecithin:retinol acyltransferase in retinal pigment microsomes. J Biol Chem 264:8636–8640
CAS
PubMed
Google Scholar
Saari JC, Crabb JW (2005) Focus on molecules: cellular retinaldehyde-binding protein (CRALBP). Exp Eye Res 81:245–246
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Bredberg L, Garwin GG (1982) Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257:13329–13333
CAS
PubMed
Google Scholar
Saari JC, Bunt-Milam AH, Bredberg DL, Garwin GG (1984) Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vis Res 24:1595–1603
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Teller DC, Crabb JW, Bredberg L (1985) Properties of an interphotoreceptor retinoid-binding protein from bovine retina. J Biol Chem 260:195–201
CAS
PubMed
Google Scholar
Saari JC, Bredberg DL, Noy N (1994) Control of substrate flow at a branch in the visual cycle. Biochemistry 33:3106–3112
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Huang J, Asson-Batres MA, Champer RJ, Garwin G, Crabb JW, Possin DE, Milam H (1995) Evidence of retinoid metabolism within cells of inner retina. Exp Eye Res 60:209–212
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Garwin GG, Van Hooser JP, Palczewski K (1998) Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vis Res 38:1325–1333
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, Huang J, Possin DE, Crabb JW (2001) Visual cycle impairment in cellular retinaldehyde-binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739–748
CAS
PubMed
CrossRef
Google Scholar
Saari JC, Nawrot M, Garwin GG, Kennedy MJ, Hurley JB, Ghyselinck NB, Chambon P (2002) Analysis of the visual cycle in cellular retinol-binding protein type 1 (CRBP1) knockout mice. Invest Ophthalmol Vis Sci 43:1730–1735
PubMed
Google Scholar
Saari JC, Nawrot M, Stenkamp RE, Teller DC, Garwin GG (2009) Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol Vis 15:844–854
CAS
PubMed
PubMed Central
Google Scholar
Saibil H (1982) Rival transmitters in visual transduction. Nature 297:106–107
CAS
PubMed
CrossRef
Google Scholar
Sakai N, Decatur J, Nakanishi K (1996) Ocular age pigment “A2-E”, an unprecedented pyridinium bisretinoid. J Am Chem Soc 118:1559–1560
CAS
CrossRef
Google Scholar
Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K (2011) Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 286:10551–10567
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sakmar TP (2006) Timing is everything: direct measurement of retinol production in cones and rods. J Gen Physiol 128:147–148
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sato K, Li S, Gordon WC, He J, Liou GI, Hill JM, Travis GH, Bazan NG, Jin M (2013) Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 30:17458–17468
CrossRef
CAS
Google Scholar
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe H-W, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:496–502
CrossRef
CAS
Google Scholar
Schultze M (1866) Zur anatomie und physiologie der retina. Arch Mikr Anat 2:176–286
Google Scholar
Semba RD (2012) On the ‘Discovery’ of vitamin A. Ann Nutr Metab 61:192–198
CAS
PubMed
CrossRef
Google Scholar
Sieving PA, Chaudhry P, Kondo M, Provenzano M, Wu D, Carlson TJ, Bush RA, Thompson DA (2001) Inhibition of the visual cycle in vivo by 13-cis-retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc Natl Acad Sci U S A 98:1835–1840
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S, Marshall K, Banfi S, Surace EM, Sun J, Redmond TM, Zhu X, Shindler KS, Ying GS, Ziviello C, Acerra C, Wright JF, McDonnell JW, High KA, Bennett J, Auricchio A (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650
CAS
PubMed
CrossRef
Google Scholar
Smith R, Bernstein PS, Curcio A (2013) Rethinking A2E. Invest Ophthalmol Vis Sci 54:5543
PubMed
PubMed Central
CrossRef
Google Scholar
Sommer A (2008) Vitamin A, deficiency and clinical disease: an historical overview. J Nutr 138:1835–1839
CAS
PubMed
Google Scholar
Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135
CAS
PubMed
CrossRef
Google Scholar
Sparrow JR, Dowling JE, Bok D (2013) Understanding RPE lipofuscin. Invest Ophthalmol Vis Sci 54:8325–8326
PubMed
PubMed Central
CrossRef
Google Scholar
Stecher H, Gelb MH, Saari JC, Palczewski K (1999) Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem 274:8577–8585
CAS
PubMed
CrossRef
Google Scholar
Strauss O (2006) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881
CrossRef
CAS
Google Scholar
Sun H (2012) Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives. Biochim Biophys Acta 1821:99–112
CAS
PubMed
CrossRef
Google Scholar
Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outr segments. Nat Genet 15:15–16
CrossRef
Google Scholar
Swaroop A, Chem EY, Bowes Rickman C, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma J-X (2011) An alternative isomerohydrolase in the retinal Muller cells of a cone-dominant species. FEBS J 278:2913–2926
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK (2013) New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 32:48–63
PubMed
CrossRef
CAS
Google Scholar
Thompson DA, Gal A (2003) Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 22:683–703
CAS
PubMed
CrossRef
Google Scholar
Travis GH, Golczak M, Moise AR, Palczewski K (2006) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol 47:469–512
CrossRef
CAS
Google Scholar
Van Hooser JP, Liang Y, Maeda T, Kuksa V, Jang G-F, He YG, Rieke F, Fong H, Detwiler PB, Palczewski K (2002) Recovery of visual functions in a mouse model of Leber congenital amaurosis. J Biol Chem 277:19173–19182
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Wald G (1934–1934) Vitamin A in eye tissues. J Gen Physiol 18:905–915
Google Scholar
Wald G (1935–1936) Carotenoids and the visual cycle. J Gen Physiol 19:351–371
Google Scholar
Wald G (1965) Visual excitation and blood clotting. Science 150:1028–1030
CAS
PubMed
CrossRef
Google Scholar
Wald G (1968) Molecular basis of visual excitation. Science 162:230–239
CAS
PubMed
CrossRef
Google Scholar
Wald G, Hubbard R (1949) The reduction of retinene1 to vitamin A1 in vitro. J Gen Physiol 32:367–349
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang J-S, Kefalov VJ (2009) An alternative pathway mediates the mouse and human cone visual cycle. Curr Biol 19:1665–1669
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang J-S, Kefalov VJ (2011) The cone-specific visual cycle. Prog Retin Eye Res 30:115–128
CAS
PubMed
CrossRef
Google Scholar
Wang J-S, Estevez ME, Cornwall MC, Kefalov VJ (2009) Intra-retinal visual cycle required for rapid cone dark adaptation. Nat Neurosci 12:295–302
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23
CAS
PubMed
CrossRef
Google Scholar
Winkler BS, DeSantis N, Solomon F (1986) Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Exp Eye Res 43:829–847
CAS
PubMed
CrossRef
Google Scholar
Winston A, Rando RR (1998) Regulation of isomerohydrolase activity in the visual cycle. Biochemistry 37:2044–2050
CAS
PubMed
CrossRef
Google Scholar
Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, Flannery JG, Corbo JC, Kefalov VJ (2015) CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 125:727–738
PubMed
PubMed Central
CrossRef
Google Scholar
Yost RW, Harrison EH, Ross AC (1988) Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. J Biol Chem 263:18693–18701
CAS
PubMed
Google Scholar
Zhang T, Enemchukwu NO, Jones A, Wang S, Dennis E, Watt CB, Pugh EN Jr, Fu Y (2015) Genetic deletion of S-opsin [prevents rapid cone degeneration in a mouse model of Leber congenital amaurosis. Hum Molec Gen 24:1755–1763
CAS
CrossRef
Google Scholar