Skip to main content

Surface Runoff Model Formulation

  • Chapter
  • First Online:
Distributed Hydrologic Modeling Using GIS

Part of the book series: Water Science and Technology Library ((WSTL,volume 74))

Abstract

Hydrologic and environmental processes are distributed in space and time. Simulation of these processes is made possible through the already well-developed spatial data analysis and management techniques of a GIS. Digital maps of soils, land use, topography, and rainfall are used to compute rainfall runoff in each grid cell in the drainage network. In principle, runoff generation caused by rainfall rates exceeding infiltration rates or soil profile saturation can is simulated in this scheme. Runoff losses due to infiltration in channels can account for runoff processes typical of alluvial fans in more arid climates or due to karstic geology where fractures permit runoff arriving from upstream to percolate into the subsurface or aquifer as recharge. The objective of this chapter is to explore the model formulation and the geospatial data used to define topography, land use/cover, soils, and precipitation input within a physics-based distributed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connell, and J. Rasmussen. 1986a. An introduction to European hydrological system—Systeme Hydrologique Europeen, SHE, 1 History and philosophy of a physically-based distributed modeling system. Journal of Hydrology 87: 45–59.

    Article  Google Scholar 

  • Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connell, and J. Rasmussen. 1986b. An Introduction to the European Hydrological System—Systeme Hydrologique European, SHE, 2: Structure of a physically-based distributed modelling system. Journal of Hydrology 87: 61–77.

    Article  Google Scholar 

  • Arnold, J.G., P.M. Allen, and G. Bernhardt. 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology 142: 47–69.

    Article  Google Scholar 

  • Arnold, J.G., R.S. Muttiah, R. Srinivasan, and P.M. Allen. 2000. Regional estimation of baseflow and groundwater recharge in the upper Mississippi River Basin. Journal of Hydrology 227: 21–40.

    Article  Google Scholar 

  • Barrett, M.E., and R.J. Charbeneau. 1997. A parsimonious model for simulating flow in a karst aquifer. Journal of Hydrology 196(1): 47–65.

    Google Scholar 

  • Chow, V.T., D.R. Maidment, and L.W. Mays. 1988. Applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Clark, M.P., B. Nijssen, J.D. Lundquist, D. Kavetski, D.E. Rupp, R.A. Woods, J.E. Freer, E.D. Gutmann, A.W. Wood, L.D. Brekke, and J.R. Arnold. 2015a. A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research 51(4): 2498–2514.

    Article  Google Scholar 

  • Clark, M.P., B. Nijssen, J.D. Lundquist, D. Kavetski, D.E. Rupp, R.A. Woods, J.E. Freer, E.D. Gutmann, A.W. Wood, D.J. Gochis, and R.M. Rasmussen. 2015b. A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research 51(4): 2515–2542.

    Article  Google Scholar 

  • De Vries, J.J., and I. Simmers, 2002. Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal 10(1): 5–17.

    Google Scholar 

  • Downer, C.W., and F.L. Ogden. 2004. GSSHA: a model for simulating diverse streamflow generating processes. Journal of Hydrologic Engineering 9(3): 161–174.

    Article  Google Scholar 

  • Fairchild, R. W., R. L. Hanson, and R. E. Davis. 1990. Hydrology of the Arbuckle Mountains Area, South-Central Oklahoma, Circular 91, Oklahoma Geological Survey-OGS, 112 pages.

    Google Scholar 

  • Faith, J.R., C.D. Blome, M.P. Pantea, J.O. Puckette, T. Halihan, N. Osborn, S. Christenson, and S. Pack. 2010. Three-dimensional geologic model of the Arbuckle-Simpson Aquifer, south-central Oklahoma (No. 2010–1123). US Geological Survey.

    Google Scholar 

  • Gochis, D.J., W. Yu, and D.N. Yates. 2014. The WRF-Hydro model technical description and user’s guide, version 2.0. NCAR Technical Document.

    Google Scholar 

  • Ivanov, V.Y., E.R. Vivoni, R.L. Bras, and D. Entekhabi. 2004a. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 40(11).

    Google Scholar 

  • Ivanov, V.Y., E.R. Vivoni, R.L. Bras, and D. Entekhabi. 2004b. Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: a fully-distributed physically-based approach. Journal of Hydrology 298(1): 80–111.

    Article  Google Scholar 

  • Jayawardena, A.W., and J.K. White. 1977. A finite element distributed catchment model (1): Analysis basis. Journal of Hydrology 34: 269–286.

    Article  Google Scholar 

  • Jayawardena, A.W., and J.K. White. 1979. A finite element distributed catchment model (2): Application to real catchment. Journal of Hydrology 42: 231–249.

    Article  Google Scholar 

  • Jain, M.K., and Vijay P. Singh. 2005. DEM-based modelling of surface runoff using diffusion wave equation, Journal of Hydrology 302(1–4): 107–126, 1 February 2005, http://dx.doi.org/10.1016/j.jhydrol.2004.06.042.

    Google Scholar 

  • Julien, P.Y., and B. Saghafian. 1991. CASC2D user manual—a two dimensional watershed rainfall-runoff model. Civil Engineering Rep. CER90-91PYJ-BS-12, Colorado State University, Fort Collins: 66.

    Google Scholar 

  • Kalbus, E., F. Reinstorf, and M. Schrimer. 2006. Measuring methods for ground water–surface water interactions: A review. Hydrology and Earth Systems Sciences 10: 873–887.

    Article  Google Scholar 

  • Kazezyılmaz-Alhan, C., and M. Medina Jr. 2007. Kinematic and diffusion waves: Analytical and numerical solutions to overland and channel flow. Journal of Hydraulic Engineering 133:2(217), 217–228, 10.1061/(ASCE)0733-9429.

    Google Scholar 

  • Kollet, S.J., and R.M. Maxwell. 2006. Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Advanced Water Resources 29: 945–958.

    Article  Google Scholar 

  • Koren, V., S. Reed, M. Smith, Z. Zhang, and D.-J. Seo. 2004. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology 291(3–4): 297–318.

    Article  Google Scholar 

  • Kuchment, L.S., V.N. Demidov, and I.G. Motovilov. 1983. Formirovanie rechnogo stoka: fiziko-matematicheskie modeli. Nauka.

    Google Scholar 

  • Kuchment, L.S., V.N. Demidov, and Y.G. Motovilov. 1986. A physically based model of the formation of snowmelt and rainfall runoff. In: Modelling Snowmelt-Induced Processes (Proceedings of Budapest Symposium, July 1986), IAHS Publ., 155:27–36.

    Google Scholar 

  • Lee, G., Y. Tachikawa, and K. Takara. 2009. Interaction between Topographic and Process Parameters due to the Spatial Resolution of DEMs in Distributed Rainfall-Runoff Modeling. Journal of Hydraulic Engineering, 10.1061/(ASCE)HE.1943-5584.0000098, 1059–1069.

    Google Scholar 

  • Lighthill, F.R.S., and G.B. Whitham. 1950. On Kinematic Waves, I, Flood Measurements in Long Rivers. Proceedings of the Royal Society of London 229: 281–316.

    Article  Google Scholar 

  • Liuzzo, L., Noto, L.V., Vivoni, E.R., and La Loggia, G., 2009. Basin-scale water resources assessment in Oklahoma under synthetic climate change scenarios using a fully distributed hydrologic model. Journal of hydrologic engineering 15(2):107–122.

    Google Scholar 

  • Meadows, M.E., and G.E. Blandford. 1990. Finite element simulation of nonlinear kinematic surface runoff. Journal of Hydrology JHYDA 7,119(1/4).

    Google Scholar 

  • Moreno, M.A., and B.E. Vieux. 2013. Estimation of spatio-temporally variable groundwater recharge using a rainfall-runoff model. Journal of Hydrologic Engineering 18(2): 237–249.

    Article  Google Scholar 

  • Ogden, F.L., and P.Y. Julien. 1994. Runoff model sensitivity to radar rainfall resolution. Journal of Hydrology 158: 1–18.

    Article  Google Scholar 

  • Osborn, N.I. 2009. Arbuckle-Simpson Hydrology Study: Final Report to the US Bureau of Reclamation. Oklahoma Water Resources Board.

    Google Scholar 

  • Ross, B.B., D.N. Contractor, and V.O. Shanholtz. 1979. A finite element model of overland and channel flow for accessing the hydrologic impact of land use change. Journal of Hydrology 41: 11–30.

    Article  Google Scholar 

  • Rutledge, A.T. 1998. Computer Programs for Describing the Recession of Ground-Water Discharge and for Estimating Mean Ground-Water Recharge and Discharge from Streamflow Records-Update. U.S Geological Survey, Water Resources Investigations Report 98-4148, 43 p.

    Google Scholar 

  • Scanlon, B.R., A. Dutton, and M.A. Sophocleous. 2003. Groundwater recharge in Texas. Board, Austin: Texas Water Dev.

    Google Scholar 

  • Scibek, J., D.M. Allen, A.J. Cannon, and P.H. Whitfield. 2007. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology 333: 165–181.

    Article  Google Scholar 

  • Segerlind, L.J. 1984. Applied Finite Element Analysis, 2nd ed. New York: Wiley.

    Google Scholar 

  • Singh, V.P. and Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. Journal of hydrologic engineering 7(4): 270–292.

    Google Scholar 

  • Sloan, P.G., and I.D. Moore. 1984. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research 20(12): 1815–1822. December.

    Article  Google Scholar 

  • Sophocleous, M. 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10: 52–67.

    Article  Google Scholar 

  • Tachikawa, Y., and T. Takasao. 1996. HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference, April 1996). IAHS Publ. no. 235.

    Google Scholar 

  • Takasao, T., and M. Shiiba. 1988. Incorporation of the effect of concentration of flow into the kinematic wave equations and its applications to runoff system lumping. Journal of Hydrology 102: 301–322.

    Article  Google Scholar 

  • Tromble, E., R. Kolar, K. Dresback, Y. Hong, B. Vieux, R. Luettich, J. Gourley, K. Kelleher, and Van Cooten, S. 2010. Aspects of Coupled Hydrologic-Hydrodynamic Modeling for Coastal Flood Inundation. Estuarine and Coastal Modeling. Estuarine and Coastal Modeling (2009), ed. Malcolm L. Spaulding, 11th International Conference on Estuarine and Coastal Modeling, Seattle, Washington, November 4–6, 724–743. doi:10.1061/41121(388)42.

  • Valett, H.M., and R.W. Sheibley. 2009. Ground water and surface water interaction. In Encyclopedia of Inland Waters, ed. G.E. Likens, 691–702. Oxford: Academic Press.

    Chapter  Google Scholar 

  • Vflo ® User Manual, 2016. Available at: http://vflo.vieuxinc.com/vflo-guide.

  • Vieux, B.E. 1988. Finite Element Analysis of Hydrologic Response Areas Using Geographic Information Systems. Department of Agricultural Engineering, Michigan State University. A dissertation submitted in partial fulfillment for the degree of Doctor of Philosophy.

    Google Scholar 

  • Vieux, B.E., V.F. Bralts, L.J. Segerlind, and R.B. Wallace. 1990. Finite element watershed modeling: One-dimensional elements. Journal of Water Resources Planning and Management, 116(6): 803–819.

    Google Scholar 

  • Vieux, B.E., and Segerlind, L.J. 1989. Finite element solution accuracy of an infiltrating channel. In: Finite element analysis in fluids, Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, April 3–7, 1989, ed. Chung, T.J., and Karr, G.R., University of Alabama in Huntsville Press. ISBN 978-0942166019, pp: 1337-1342.

    Google Scholar 

  • Vieux, B.E., and N. Gauer. 1994. Finite element modeling of storm water runoff using GRASS GIS. Microcomputers in Civil Engineering 9(4): 263–270.

    Article  Google Scholar 

  • Vieux, B.E. 2001. Distributed Hydrologic Modeling Using GIS, ISBN 0-7923-7002-3, 1st ed. Norwell, Massachusetts, Water Science Technology Series: Kluwer Academic Publishers. 38.

    Google Scholar 

  • Vieux, B.E., J.E. Vieux. 2002. Vflo ®: A real-time distributed hydrologic model. In Proceedings of the 2nd Federal Interagency Hydrologic Modeling Conference, July 28–August 1, 2002, Las Vegas, Nevada. Abstract and paper on CD-ROM.

    Google Scholar 

  • Vieux, B.E., C. Chen, J.E. Vieux, and K.W. Howard. 2003. Operational deployment of a physics-based distributed rainfall-runoff model for flood. In Weather Radar Information and Distributed Hydrological Modelling: Proceedings of an International Symposium (Symposium HS03) Held During IUGG 2003, the XXIII General Assembly of the International Union of Geodesy and Geophysics: at Sapporo, Japan, from 30 June to 11 July, 2003. No. 282. International Assn of Hydrological Sciences, 2003.

    Google Scholar 

  • Vivoni, E.R., V.Y. Ivanov, R.L. Bras, and D. Entekhabi. 2004. Generation of triangulated irregular networks based on hydrological similarity. Journal of Hydrologic Engineering 9(4): 288–302.

    Article  Google Scholar 

  • Vivoni, E.R., D. Entekhabi, R.L. Bras, and V.Y. Ivanov. 2007. Controls on runoff generation and scale-dependence in a distributed hydrologic model. Hydrology and Earth System Sciences Discussions 11(5): 1683–1701.

    Article  Google Scholar 

  • Wigmosta, M.S., L.W. Vail, and D.P. Lettenmaier. 1994. A distributed hydrology-vegetation model for complex terrain. Water Resources Research 30(6): 1665–1679.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baxter E. Vieux .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vieux, B.E. (2016). Surface Runoff Model Formulation. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0930-7_9

Download citation

Publish with us

Policies and ethics