Skip to main content

Distributed Precipitation Estimation

Distributed Model Input

  • Chapter
  • First Online:
Distributed Hydrologic Modeling Using GIS

Part of the book series: Water Science and Technology Library ((WSTL,volume 74))

Abstract

Historically, rainfall data for hydrologic applications have been obtained from a sparse network of rain gauges. A gauge samples rain at distinct points and therefore may not accurately reflect the spatial distribution of rainfall, especially from convective storms. Interest in using radar estimates of rainfall in distributed modeling comes from the desire to reduce errors due to imprecise knowledge of rainfall distribution in time and space. Traditionally, point estimates of rain gauge accumulations are distributed in space over the river basin by some means, such as Thiessen polygon, inverse distance weighting, and kriging. This chapter treats the topic of using radar and rain gauge networks to measure spatially distributed precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambroise, B., and J. Aduizian-Gerard. 1989. Test of a trigonometrical model of a slope rainfall in a small rengelbach catchment. In Proc WMO/IAHS/ETH Workshop, ed. Sevruk, B. Swiss Federal Institute of Technology, Zurich, 81–85. St. Moritz. Switzerland, 4–7 December 1989.

    Google Scholar 

  • Bedient, P.B., A. Holder, J.A. Benavides, and B.E. Vieux. 2003. Radar-based flood warning system applied to tropical storm allison. Journal of Hydrologic Engineering 8(6): 308–318.

    Google Scholar 

  • Berkowitz, D.S., J.A. Schultz, S. Vasiloff, K.L. Elmore, C.D. Payne, and J.B. Boettcher. 2013. Status of Dual Pol QPE in the WSR-88D Network. In: 93th AMS, 27th conference on Hydrology. Austin, TX.

    Google Scholar 

  • Chrisman, J., and C. Chrisman. 1999. An operational guide to WSR-88D reflectivity data quality assurance. In: WSR-88D Radar Operations Center paper, 15 pp. (Available from WSR-88D Radar Operations Center, 3200 Marshall Ave., Norman, OK 73072.).

    Google Scholar 

  • Cocks, S.B., D.S. Berkowitz, R. Murnan, J.A. Schultz, S. Castleberry, K. Howard, K. Elmore, and S. Vasiloff, 2012. Initial assessment of the dual-polarization quantitative precipitation estimate algorithm’s performance for two dual-polarization WSR-88Ds. Proceedings of 28th conference on interactive information processing systems (IIPS), New Orleans, LA, Amer. Meteor. Soc., 7B.2.

    Google Scholar 

  • Crum, T.D., and R.L. Alberty. 1993. The WSR-88D and the WSR-88D operational support facility. Bulletin of the American Meteorological Society 27(9): 1669–1687.

    Article  Google Scholar 

  • Doviak, R.J., and D.S. Zrnic. 1993. Doppler radar and weather observations, 2nd ed. Orlando, Florida: Academic Press.

    Google Scholar 

  • Einfalt, T., K. Arnbjerg-Nielsen, D. Faure, N.-E. Jensen, M. Quirmbach, G. Vaes, B.E. Vieux, and C. Golz. 2004. Towards a roadmap for use of radar rainfall data in urban drainage. Journal of Hydrology 299(3–4): 186–202.

    Article  Google Scholar 

  • Emmanuel, I., H. Andrieu, E. Leblois, and B. Flahaut. 2012. Temporal and spatial variability of rainfall at urban hydrological scales. Journal of Hydrology 430–431: 162–172.

    Google Scholar 

  • Emmanuel, I., H. Andrieu, E. Leblois, N. Janey, and O. Payrastre, 2015. Influence of rainfall spatial variability on rainfall–runoff modelling: benefit of a simulation approach? Journal of Hydrology 531, Part 2: 337–348.

    Google Scholar 

  • Faurès, J.-M., D.C. Goodrich, D.A. Woolhiser, and S. Sorooshian, 1995. Impact of small-scale spatial rainfall variability on runoff modeling. Journal of Hydrology 173(1–4): 309–326.

    Google Scholar 

  • Fulton, R.A., J.P. Breidenbach, D.-J. Seo, D.A. Miller, and O’Bannon, T. 1998. The WSR-88D Rainfall Algorithm. Journal of Weather and Forecast 13(2): 377–395.

    Google Scholar 

  • Giangrande, S.E., and A.V. Ryzhkov. 2008. Estimation of rainfall based on the results of polarimetric echo classification. Journal of Applied Meteorology and Climatology 47: 2445–2462.

    Article  Google Scholar 

  • Goodrich, D.C. 1990. Geometric simplification of a distributed rainfall-runoff model over a range of basin scales. PhD. diss., University of Arizona, Tucson, AZ.

    Google Scholar 

  • Goodrich, D.C., J.-M. Faurès, D.A. Woolhiser, L.J. Lane, and S. Sorooshian, 1995. Measurement and analysis of small-scale convective storm rainfall variability. Journal of Hydrology 173(1–4): 283–308.

    Google Scholar 

  • Goutorbe, J.-P., T. Lebel, A. Tinga, P. Bessemoulin, J. Bouwer, A.J. Dolman, E.T. Wingman, J.H.C. Gash, M. Hoepffner, P. Kabat, Y.H. Kerr, B. Monteny, S.D. Prince, F. Saïd, P. Sellers, and J.S. Wallace. 1994. Hapex-sahel: a large scale study of land-surface interactions in the semi-arid tropics. Annales Geophysicae 12(1): 53–64.

    Article  Google Scholar 

  • Haan, C.T. 2002. Statistical methods in hydrology. Ames, Iowa: Iowa State University Press. ISBN 978-0813815039.

    Google Scholar 

  • Lebel, T., and L. Le Barbé. 1997. Rainfall monitoring during HAPEX-Sahel. 2. Point and areal estimation at the event and seasonal scales. Journal of Hydrogeology 188–189: 97–122.

    Article  Google Scholar 

  • Lebel, T., J.D. Taupin, and N.D’Amato, 1997. Rainfall monitoring during HAPEX-Sahel. 1. General rainfall conditions and climatology. Journal of Hydrogeology 188–189: 74–96.

    Google Scholar 

  • Lebel, T., B. Cappelaere, S. Galle, N. Hanan, L. Kergoat, S. Levis, B.E. Vieux, L. Descroix, M. Gosset, E. Mougin, C. Peugeot, and L. Seguis, 2009. AMMA-CATCH studies in the Sahelian region of West-Africa: an overview. Journal of Hydrogeology 375(1–2): 3–13.

    Google Scholar 

  • Looper, J.P., and B.E. Vieux. 2012. An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. Journal of Hydrogeology 412: 114–132.

    Article  Google Scholar 

  • Looper, J.P., B.E. Vieux, and M.A. Moreno, 2012. Assessing the impacts of precipitation bias on distributed hydrologic model calibration and prediction accuracy. Journal of Hydrogeology 418–419: 110–122.

    Google Scholar 

  • Marshall, J.S. and W. Mc K. Palmer, 1948 The Distribution of Raindrops with Size. Journal of meteorology 5: 165–166.

    Google Scholar 

  • Mimikou, M.A., and E.A. Baltas, 1996. Flood forecasting based on radar rainfall measurements. Journal of Water Resources Planning and Management 122(3).

    Google Scholar 

  • Morin, E., D.C. Goodrich, R.A. Maddox, X. Gao, H.V. Gupta, and S. Sorooshian, 2006. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Advances in Water Resources 29(6): 843–860. ISSN 0309-1708.

    Google Scholar 

  • Morin, J., D. Rosenfield, and E. Amitai. 1995. Radar rain field evaluation and possible use of its high temporal and spatial resolution for hydrological purposes. Journal of Hydrogeology 172: 275–292.

    Article  Google Scholar 

  • NOAA-NWS, 2015. Interface Control Document, Build 16.0, Document 26200001 V. WSR-88D Radar Operations Center. Norman, OK.

    Google Scholar 

  • Pathak, C. and B. Vieux, 2008. Geo-spatial comparison of rain gauge and nexrad data for Central and South Florida. World Environmental and Water Resources Congress, May, 1–11.

    Google Scholar 

  • Pereira, A.J., K.C. Crawford, C.L. Hartzell., 1998. Improving WSR-88D hourly rainfall estimates. Journal of Weather and Forecasting, American Meteorological Society, 13: 1016–1028.

    Google Scholar 

  • Ryzhkov, A.V., S.E. Giangrande, and T.J. Schuur. 2005a. Rainfall estimation with a polarimetric prototype of the WSR-88D Radar. Journal of Applied Meteorology 44: 502–515.

    Article  Google Scholar 

  • Ryzhkov, A.V., T.J. Schuur, D.W. Burgess, P.L. Heinselman, S. Giangrande, and D.S. Zrnic. 2005b. The joint polarization experiment: polarimetric rainfall measurements and hydrometeor classification. Bulletin of the American Meteorological Society 86: 809–824.

    Article  Google Scholar 

  • Rosenfeld, D., D.B. Wolff, and D. Atlas. 1993. General probability-matched relations between radar reflectivity and rain rate. Journal of applied Meteorology 32: 50–72.

    Article  Google Scholar 

  • Rosenfeld, D., D.B. Wolff, and E. Amitai. 1994. The window probability method for rainfall measurements with radar. Journal of Applied Meteorology 33: 682–693.

    Article  Google Scholar 

  • Rosenfeld, D., E. Amitai, and D.B. Wolff. 1995a. Classification of rain regimes by the 3-dimensional properties of reflectivity fields. Journal of Applied Meteorology 34: 198–211.

    Article  Google Scholar 

  • Rosenfeld, D., E. Amitai, and D.B. Wolff. 1995b. Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. Journal of Applied Meteorology 34: 212–223.

    Article  Google Scholar 

  • Seo, D.-J., J.P. Breidenbach, and E.R. Johnson. 1999. Real-time estimation of mean field bias in radar rainfall data. Journal of Hydrology 223: 131–147.

    Article  Google Scholar 

  • Seo, D.-J., and P. Breidenbach. 2002. Real-time correction of spatially nonuniform bias in radar rainfall data using rain gages measurements. Journal of Hydrometeorology 3: 93–111.

    Article  Google Scholar 

  • U.S. Army Corps of Engineers, 1994. Flood runoff analysis. Engineer Manual 1110–2-1417, Washington, DC.

    Google Scholar 

  • U.S. Army Corps of Engineers, 1996. Hydrologic aspects of flood warning—preparedness programs. Technical Letter 1110-2-540, Washington, DC.

    Google Scholar 

  • U.S. Department of Commerce. 1947. Thunderstorm rainfall, Hydrometeorological Report No. 5, Weather Bureau, Office of Hydrologic Director, Silver Springs, MD.

    Google Scholar 

  • U.S. Department of Commerce, 2013. Federal Meteorological Handbook No. 11, Doppler Radar Meteorological Observations: Part A System Concepts, Responsibilities, and Procedures, FMC-H11A-2003, Washington, DC.

    Google Scholar 

  • U.S. Department of Commerce, 2005. Federal meteorological handbook no. 11, Doppler radar meteorological observations: part B doppler radar theory and meteorology, FCM-H11B-2005, Washington, DC.

    Google Scholar 

  • U.S. Department of Commerce, 2006a. Federal meteorological handbook no. 11, Doppler radar meteorological observations: part C WSR-88D products and algorithms, FCM-H11C-2006, Washington, DC.

    Google Scholar 

  • U.S. Department of Commerce, 2006b. Federal meteorological handbook no. 11, Doppler radar meteorological observations: part D WSR-88D unit description and operational applications, FCM-H11D-2006, Washington, DC.

    Google Scholar 

  • Vallabhaneni, S., B.E. Vieux, and T. Meeneghan, 2003. Radar-rainfall technology integration into hydrologic and hydraulic modeling projects. In Practical Modeling of urban water systems, monograph 12. Proceedings of the 2003, Stormwater and Urban Water Systems Modeling Workshops and Conference, Toronto Canada. Computational Hydraulics Institute.

    Google Scholar 

  • Vieux, B.E., and P.B. Bedient. 1998. Estimation of rainfall for flood prediction from WSR-88D reflectivity: a case study, 17-18 October 1994. J. Weather and Forecast 13(2): 407–415.

    Article  Google Scholar 

  • Vieux, B.E., and P.B. Bedient, 2004. Assessing urban hydrologic prediction accuracy through event reconstruction. Journal of Hydrogeology, Special Issue on Urban Hydrology. Forthcoming.

    Google Scholar 

  • Vieux, B.E. and J.E. Vieux, 2003. Development of a radar rainfall system for sewer system management. In Proceedings of sixth international workshop on precipitation in Urban areas measured and simulated precipitation data requirements for hydrological modelling, 4–7 December, Pontresina, Switzerland.

    Google Scholar 

  • Vieux, B. and Pathak, C., 2007. Evaluation of rain gauge network density and NEXRAD rainfall accuracy. In Proceedings of the American Society of civil engineers, World Environmental and Water Resources Congress, 1–12. doi:10.1061/40927(243)278.

  • Wilson, J., and E. Brandes. 1979. Radar measurement of rainfall—a summary. Bulletin of the American Meteorological Society 60: 1048–1058.

    Article  Google Scholar 

  • Zawadzki, I.I. 1973. Statistical properties of precipitation patterns. Journal of Applied Meteorology 12: 459–472.

    Article  Google Scholar 

  • Zawadzki, I.I. 1975. On radar-raingage comparison. Journal of Applied Meteorology 14: 1430–1436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baxter E. Vieux .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vieux, B.E. (2016). Distributed Precipitation Estimation. In: Distributed Hydrologic Modeling Using GIS. Water Science and Technology Library, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0930-7_8

Download citation

Publish with us

Policies and ethics