Regulation of IL-6 in Immunity and Diseases

  • Toshio Tanaka
  • Masashi Narazaki
  • Kazuya Masuda
  • Tadamitsu KishimotoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 941)


Interleukin-6 (IL-6) is a prototypical cytokine with functional pleiotropy and plays an important role in host defense. When infections or tissue injuries occur, IL-6 is promptly produced by monocytes and macrophages and contributes to removal of infectious agents and restoration of damaged tissues through activation of immune, hematological, and acute-phase responses. Once stress is removed from the host, IL-6 synthesis ends, but uncontrolled excessive or persistent IL-6 production plays a pathological role in the development of various inflammatory diseases and cancers, indicating that IL-6 is a double-edged sword for the host. Thus, the proper IL-6 expression is very important for host defense and is strictly controlled by chromatin structure, transcriptional regulation, and posttranscriptional modification. Differentiation status of cells, various transcription factors, RNA-binding proteins, and microRNAs are involved in this process. Since it is assumed that dysregulation of any of these regulatory molecules may cause abnormal IL-6 expression in a particular disease, further elucidation of the factors and processes involved in IL-6 expression can be expected to facilitate to clarification of pathogenesis and to identification of novel target molecule(s) for specific diseases.


Arid5a IL-6 MicroRNAs Regnase-1 


  1. 1.
    Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity. 1998;9:765–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Akira S, Kishimoto T. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev. 1992;127:25–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Ambrosino C, Ruocco MR, Chen X, Mallardo M, Baudi F, Trematerra S, Quinto I, Venuta S, Scala G. HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J Biol Chem. 1997;272:14883–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson P. Post-transcriptional control of cytokine production. Nat Immunol. 2008;9:353–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Chiou GY, Chien CS, Wang ML, Chen MT, Yang YP, Yu YL, Chien Y, Chang YC, Shen CC, Chio CC, et al. Epigenetic regulation of the miR142-3p/interleukin-6 circuit in glioblastoma. Mol Cell. 2013;52:693–706.CrossRefPubMedGoogle Scholar
  7. 7.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, Woo P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102:1369–76.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Georgiou P, Maroulakou I, Green J, Dantis P, Romanospica V, Kottaridis S, Lautenberger J, Watson D, Papas T, Fischinger P, et al. Expression of ets family of genes in systemic lupus erythematosus and Sjogren’s syndrome. Int J Oncol. 1996;9:9–18.PubMedGoogle Scholar
  11. 11.
    Hou H, Wang C, Sun F, Zhao L, Dun A, Sun Z. Association of interleukin-6 gene polymorphism with coronary artery disease: an updated systematic review and cumulative meta-analysis. Inflamm Res. 2015;64:707–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Inouye S, Fujimoto M, Nakamura T, Takaki E, Hayashida N, Hai T, Nakai A. Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem. 2007;282:33210–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T, Kuniyoshi K, Satoh T, Saitoh T, Matsushita M, Standley DM, et al. The IkB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol. 2011;12:1167–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Kang JG, Pripuzova N, Majerciak V, Kruhlak M, Le SY, Zheng ZM. Kaposi’s sarcoma-associated herpesvirus ORF57 promotes escape of viral and human interleukin-6 from microRNA-mediated suppression. J Virol. 2011;85:2620–30.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kang S, Tanaka T, Kishimoto T. Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol. 2015;27:21–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kishimoto T. The biology of interleukin-6. Blood. 1989;74:1–10.PubMedGoogle Scholar
  17. 17.
    Kishimoto T. Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol. 2005;23:1–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Leung K, Nabel GJ. HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kappa B-like factor. Nature. 1988;333:776–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Liebermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10:2327–34.CrossRefGoogle Scholar
  20. 20.
    Masuda K, Ripley B, Nishimura R, Mino T, Takeuchi O, Shioi G, Kiyonari H, Kishimoto T. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc Natl Acad Sci U S A. 2013;110:9409–14.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S. Transcriptional factor NF-IL-6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A. 1993;90:10193–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H, et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature. 2009;458:1185–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, Uehata T, Tartey S, Akira S, Suzuki Y, et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell. 2015;161:1058–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Ndlovu MN, Van Lint C, Van Wesemael K, Callebert P, Chalbos D, Haegeman G, Vanden Berghe W. Hyperactivated NF-{kappa}B and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol. 2009;29:5488–504.CrossRefPubMedGoogle Scholar
  25. 25.
    Nile CJ, Read RC, Akil M, Duff GW, Wilson AG. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 2008;58:2686–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Ohno H, Kaneko S, Lin Y, Kobayashi K, Murakami S. Human hepatitis B virus X protein augments the DNA binding of nuclear factor for IL-6 through its basic-leucine zipper domain. J Med Virol. 1999;58:11–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Poplutz MK, Wessels I, Rink L, Uciechowski P. Regulation of the Interleukin-6 gene expression during monocytic differentiation of HL-60 cells by chromatin remodeling and methylation. Immunobiology. 2014;219:619–26.CrossRefPubMedGoogle Scholar
  28. 28.
    Saito Y, Kagami S, Sanayama Y, Ikeda K, Suto A, Kashiwakuma D, Furuta S, Iwamoto I, Nonaka K, Ohara O, et al. AT-rich-interactive domain-containing protein 5a functions as a negative regulator of retinoic acid receptor-related orphan nuclear receptor γt-induced Th17 cell differentiation. Arthritis Rheum. 2014;66:1185–94.CrossRefGoogle Scholar
  29. 29.
    Sato S, Lennard Richard M, Brandon D, Jones Buie JN, Oates JC, Gilkeson GS, Zhang XK. A critical role of the transcriptional factor Fli-1 in murine lupus development by regulation of interleukin-6 expression. Arthritis Rheumatol. 2014;66:3436–44.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassarre F, Dragonetti E, Quinto I, Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med. 1994;179:961–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Stoecklin G, Gross B, Ming XF, Moroni C. A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene. 2003;22:3554–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Tanaka T, Narazaki M, Kishimoto T. Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol. 2012;52:199–219.CrossRefPubMedGoogle Scholar
  33. 33.
    Tanaka T, Narazaki M, Masuda K, Kishimoto T. Interleukin-6; pathogenesis and treatment of autoimmune inflammatory diseases. Inflamm Regen. 2013;33:54–65.CrossRefGoogle Scholar
  34. 34.
    Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2:288–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vanden Berghe W, De Bosscher K, Boone E, Plaisance S, Haegeman G. Nuclear factor-kB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem. 1999;274:32091–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Vanden Berghe W, Vermeulen L, De Wilde G, De Bosscher K, Boone E, Haegeman G. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol. 2000;60:1185–95.CrossRefPubMedGoogle Scholar
  38. 38.
    Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med. 1989;169:333–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AY, Jooi LL, Lee CG. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 2010;53:57–66.CrossRefPubMedGoogle Scholar
  40. 40.
    Xiang, M., Birkbak, N.J., Vafaizadeh, V., Walker, S.R., Yeh, J.E., Liu, S., Kroll, Y., Boldin, M., Taganov, K., Groner, B., et al. STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-kB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 2014;7:ra11.Google Scholar
  41. 41.
    Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC, Gao XM, Qiao P, Zheng Y, Sheng YY, et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology. 2013;58:158–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang XK, Gallant S, Molano I, Moussa OM, Ruiz P, Spyropoulos DD, Watson DK, Gilkeson G. Decreased expression of the Ets family transcription factor Fli-1 markedly prolongs survival and significantly reduces renal disease in MRL/lpr mice. J Immunol. 2004;173:6481–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Toshio Tanaka
    • 1
  • Masashi Narazaki
    • 2
  • Kazuya Masuda
    • 3
  • Tadamitsu Kishimoto
    • 3
    Email author
  1. 1.Department of Clinical Application of Biologics, Osaka University Graduate School of MedicineOsaka UniversityOsakaJapan
  2. 2.Department of Respiratory Medicine, Allergy and Rheumatic DiseasesOsaka University Graduate School of Medicine, Osaka UniversityOsakaJapan
  3. 3.Laboratory of Immune Regulation, World Premier International Immunology Frontier Research CenterOsaka UniversityOsakaJapan

Personalised recommendations