Skip to main content

Cells in the Skin

  • Chapter
  • First Online:
Practical Immunodermatology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Keratinocytes in Skin Immune System

  1. Houben E, et al. A keratinocyte’s course of life. Skin Pharmacol Physiol. 2007;20:122–32.

    Article  CAS  PubMed  Google Scholar 

  2. Candi E, et al. The cornifi ed envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6:328–40.

    Article  CAS  PubMed  Google Scholar 

  3. Uchi H, et al. Cytokines and chemokines in the epidermis. J Dermatol Sci. 2000;24 Suppl 1:S29–38.

    Article  CAS  PubMed  Google Scholar 

  4. Liu YJ, et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol. 2007;25:193–219.

    Article  CAS  PubMed  Google Scholar 

  5. Soumelis V, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80.

    Article  CAS  PubMed  Google Scholar 

  6. Loser K, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12:1372–9.

    Article  CAS  PubMed  Google Scholar 

  7. Morioka Y, et al. Cathelicidin antimicrobial peptides inhibit hyaluronan-induced cytokine release and modulate chronic allergic dermatitis. J Immunol. 2008;181:3915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nasir A, et al. Exaggerated and persistent cutaneous delayed-type hypersensitivity in transgenic mice whose epidermal keratinocytes constitutively express B7-1 antigen. J Clin Invest. 1994;94:892–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams IR, et al. Keratinocyte expression of B7-1 in transgenic mice amplifies the primary immune response to cutaneous antigens. Proc Natl Acad Sci U S A. 1994;91:12780–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferguson TA, et al. Regulation of contact hypersensitivity by interleukin 10. J Exp Med. 1994;179:1597–604.

    Article  CAS  PubMed  Google Scholar 

  11. Kollisch G, et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology. 2005;114:531–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mempel M, et al. Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol. 2003;121:1389–96.

    Article  CAS  PubMed  Google Scholar 

  13. Pivarcsi A, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol. 2003;15:721–30.

    Article  CAS  PubMed  Google Scholar 

  14. Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71–87.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lebre MC, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127:331–41.

    Article  CAS  PubMed  Google Scholar 

  16. Tigalonowa M, et al. The distribution of Fc gamma RI, Fc gamma RII and Fc gamma R III on Langerhans’ cells and keratinocytes in normal skin. Acta Derm Venereol. 1990;70:385–90.

    CAS  PubMed  Google Scholar 

  17. Cauza K, et al. FcgammaRIII expression on cultured human keratinocytes and upregulation by interferon-gamma. J Invest Dermatol. 2002;119:1074–9.

    Article  CAS  PubMed  Google Scholar 

  18. Szolnoky G, et al. A mannose-binding receptor is expressed on human keratinocytes and mediates killing of Candida albicans. J Invest Dermatol. 2001;117:205–13.

    Article  CAS  PubMed  Google Scholar 

  19. Pellegrini G, et al. Expression, topography, and function of integrin receptors are severely altered in keratinocytes from involved and uninvolved psoriatic skin. J Clin Invest. 1992;89:1783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bos JD, et al. The skin immune system: progress in cutaneous biology. Immunol Today. 1993;14:75–8.

    Article  CAS  PubMed  Google Scholar 

  21. Singh A, et al. Innate immunity and the regulation and mobilization of keratinocyte stem cells: are the old players playing a new game? Exp Dermatol. 2012;21(9):660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abrahamsohn PA. Epithelial tissue. In: Basic histology: text and atlas. 11th ed. New York: McGraw-Hill; 2005. p. 66–89.

    Google Scholar 

  23. Strbo N, et al. Innate and adaptive immune responses in wound epithelialization. Adv Wound Care (New Rochelle). 2014;3(7):492–501.

    Article  Google Scholar 

  24. Sorensen OE, et al. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol. 2003;170:5583–9.

    Article  CAS  PubMed  Google Scholar 

  25. Braff MH, et al. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol. 2005;124:394–400.

    Article  CAS  PubMed  Google Scholar 

  26. Sayama K, et al. New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of betadefensins, LL37, and TLR2. Eur J Immunol. 2005;35:1886–95.

    Article  CAS  PubMed  Google Scholar 

  27. Ali RS, et al. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol. 2001;117:106–11.

    Article  CAS  PubMed  Google Scholar 

  28. Oren A, et al. In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol. 2003;74:180–2.

    Article  CAS  PubMed  Google Scholar 

  29. Richard L, et al. Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol. 2011;131(10):1974–80.

    Article  CAS  Google Scholar 

  30. Gallo RL, et al. Innate barriers against infection and associated disorders. Drug Discov Today Dis Mech. 2008;5:145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chu AC, et al. The keratinocyte. In: Bos JD, editor. Skin immune system (SIS): cutaneous immunology and clinical immunodermatology. 3rd ed. Boca Raton: CRC Press; 2005. p. 77–99.

    Google Scholar 

  32. Piskin G, et al. In vitro and in vivo expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol. 2006;176:1908–15.

    Article  CAS  PubMed  Google Scholar 

  33. Corsini E, et al. Epidermal cytokines in experimental contact dermatitis. Toxicology. 2000;142:203–11.

    Article  CAS  PubMed  Google Scholar 

  34. Grone A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002;88:1–12.

    Article  CAS  PubMed  Google Scholar 

Langerhans Cells and Other Dendritic Cells in Skin

  1. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  2. Rupec RA, Boneberger S, Ruzicka T. What is really in control of skin immunity: lymphocytes, dendritic cells, or keratinocytes? facts and controversies. Clin Dermatol. 2010;28(1):62–6.

    Article  PubMed  Google Scholar 

  3. Tang A, et al. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature. 1993;361(6407):82–5.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang W, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375(6527):151–5.

    Article  CAS  PubMed  Google Scholar 

  5. Hunger RE, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest. 2004;113(5):701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poulin LF, et al. The dermis contains langerin + dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med. 2007;204(13):3119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shklovskaya E, Roediger B, Fazekas B, Fazekas de St Groth B. Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4+ T cell proliferation in vivo. J Immunol. 2008;181(1):418–30.

    Article  CAS  PubMed  Google Scholar 

  8. Ginhoux F, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med. 2009;206(13):3115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nestle FO, et al. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol. 1993;151(11):6535–45.

    CAS  PubMed  Google Scholar 

  10. Haniffa M, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5(12):1219–26.

    Article  CAS  PubMed  Google Scholar 

  12. Cella M, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5(8):919–23.

    Article  CAS  PubMed  Google Scholar 

  13. Helft J, et al. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev. 2010;234(1):55–75.

    Article  CAS  PubMed  Google Scholar 

  14. Belz GT, Nutt SL. Transcriptional programming of the dendritic cell network. Nat Rev Immunol. 2012;12(2):101–13.

    Article  CAS  PubMed  Google Scholar 

  15. Chu CC, Di Meglio P, Nestle FO. Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol. 2011;23(1):28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henri S, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med. 2010;207(1):189–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klareskog L, et al. Epidermal Langerhans cells express Ia antigens. Nature. 1977;268(5617):248–50.

    Article  CAS  PubMed  Google Scholar 

  19. Rowden G, Lewis MG, Sullivan AK. Ia antigen expression on human epidermal Langerhans cells. Nature. 1977;268(5617):247–8.

    Article  CAS  PubMed  Google Scholar 

  20. Stingl G, et al. Epidermal Langerhans cells bear Fc and C3 receptors. Nature. 1977;268(5617):245–6.

    Article  CAS  PubMed  Google Scholar 

  21. Frelinger JG, et al. Mouse epidermal Ia molecules have a bone marrow origin. Nature. 1979;282(5736):321–3.

    Article  CAS  PubMed  Google Scholar 

  22. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature. 1979;282(5736):324–6.

    Article  CAS  PubMed  Google Scholar 

  23. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985;161(3):526–46.

    Article  CAS  PubMed  Google Scholar 

  24. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chorro L, Geissmann F. Development and homeostasis of ‘resident’ myeloid cells: the case of the Langerhans cell. Trends Immunol. 2010;31(12):438–45.

    Article  CAS  PubMed  Google Scholar 

  26. Hoeffel G, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 2012;209(6):1167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schuster C, et al. Human embryonic epidermis contains a diverse Langerhans cell precursor pool. Development. 2014;141(4):807–15.

    Article  CAS  PubMed  Google Scholar 

  28. Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005;49(2–3):243–50.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi M, et al. Development of ATPase-positive, immature Langerhans cells in the fetal mouse epidermis and their maturation during the early postnatal period. Cell Tissue Res. 1987;248(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  30. Chorro L, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med. 2009;206(13):3089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schuster C, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigen-presenting cells. J Exp Med. 2009;206(1):169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghigo C, et al. Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med. 2013;210(9):1657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sere K, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity. 2012;37(5):905–16.

    Article  CAS  PubMed  Google Scholar 

  34. Ginhoux F, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol. 2006;7(3):265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borkowski TA, et al. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med. 1996;184(6):2417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaplan DH, et al. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med. 2007;204(11):2545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kel JM, et al. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol. 2010;185(6):3248–55.

    Article  CAS  PubMed  Google Scholar 

  38. Greter M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37(6):1050–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borkowski TA, et al. A role for TGFbeta1 in langerhans cell biology. Further characterization of the epidermal Langerhans cell defect in TGFbeta1 null mice. J Clin Invest. 1997;100(3):575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu YP, et al. TGFbeta/Smad3 signal pathway is not required for epidermal Langerhans cell development. J Invest Dermatol. 2012;132(8):2106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hacker C, et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol. 2003;4(4):380–6.

    Article  CAS  PubMed  Google Scholar 

  42. Fainaru O, et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 2004;23(4):969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schiavoni G, et al. ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood. 2004;103(6):2221–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ichikawa E, et al. Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. Proc Natl Acad Sci U S A. 2004;101(11):3909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chopin M, et al. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. J Exp Med. 2013;210(13):2967–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van de Laar L, et al. Tight control of STAT5 activity determines human CD34-derived interstitial dendritic cell and langerhans cell development. J Immunol. 2011;186(12):7016–24.

    Article  PubMed  CAS  Google Scholar 

  47. Iwama A, et al. Reciprocal roles for CCAAT/enhancer binding protein (C/EBP) and PU.1 transcription factors in Langerhans cell commitment. J Exp Med. 2002;195(5):547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu K, et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol. 2007;8(6):578–83.

    Article  CAS  PubMed  Google Scholar 

  49. Adolfsson J, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.

    Article  CAS  PubMed  Google Scholar 

  50. Schlenner SM, et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity. 2010;32(3):426–36.

    Article  CAS  PubMed  Google Scholar 

  51. Fogg DK, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 2006;311(5757):83–7.

    Article  CAS  PubMed  Google Scholar 

  52. Onai N, et al. Identification of clonogenic common Flt3 + M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol. 2007;8(11):1207–16.

    Article  CAS  PubMed  Google Scholar 

  53. Auffray C, et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med. 2009;206(3):595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schlitzer A, et al. Identification of CCR9- murine plasmacytoid DC precursors with plasticity to differentiate into conventional DCs. Blood. 2011;117(24):6562–70.

    Article  CAS  PubMed  Google Scholar 

  55. Satpathy AT, et al. Re(de)fining the dendritic cell lineage. Nat Immunol. 2012;13(12):1145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Braathen LR, Thorsby E. Studies on human epidermal Langerhans cells. I. Allo-activating and antigen-presenting capacity. Scand J Immunol. 1980;11(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ptak W, et al. Role of antigen-presenting cells in the development and persistence of contact hypersensitivity. J Exp Med. 1980;151(2):362–75.

    Article  CAS  PubMed  Google Scholar 

  58. Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med. 1988;167(2):700–5.

    Article  CAS  PubMed  Google Scholar 

  59. Witmer-Pack MD, et al. Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med. 1987;166(5):1484–98.

    Article  CAS  PubMed  Google Scholar 

  60. Kissenpfennig A, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity. 2005;22(5):643–54.

    Article  CAS  PubMed  Google Scholar 

  61. Bennett CL, et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol. 2005;169(4):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaplan DH, et al. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005;23(6):611–20.

    Article  CAS  PubMed  Google Scholar 

  63. Bursch LS, et al. Identification of a novel population of Langerin + dendritic cells. J Exp Med. 2007;204(13):3147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Noordegraaf M, et al. Functional redundancy of Langerhans cells and Langerin + dermal dendritic cells in contact hypersensitivity. J Invest Dermatol. 2010;130(12):2752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Honda T, et al. Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. J Allergy Clin Immunol. 2010;125(5):1154–6. e2.

    Article  PubMed  Google Scholar 

  66. Shklovskaya E, et al. Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A. 2011;108(44):18049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kautz-Neu K, et al. Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med. 2011;208(5):885–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwarz A, et al. Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol. 2010;130(5):1419–27.

    Article  CAS  PubMed  Google Scholar 

  69. Stary G, et al. Glucocorticosteroids modify Langerhans cells to produce TGF-beta and expand regulatory T cells. J Immunol. 2011;186(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  70. Igyártó BZ, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity. 2011;35(2):260–72.

    Article  PubMed  CAS  Google Scholar 

  71. Haley K, et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J Immunol. 2012;188(9):4334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seneschal J, et al. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity. 2012;36(5):873–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ouchi T, et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med. 2011;208(13):2607–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang L, et al. Langerin expressing cells promote skin immune responses under defined conditions. J Immunol. 2008;180(7):4722–7.

    Article  CAS  PubMed  Google Scholar 

  75. Klechevsky E, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 2008;29(3):497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Angel CE, et al. CD14+ antigen-presenting cells in human dermis are less mature than their CD1a + counterparts. Int Immunol. 2007;19(11):1271–9.

    Article  CAS  PubMed  Google Scholar 

  77. Chun IY, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193(9):4335–43.

    Article  CAS  Google Scholar 

  78. Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008;29(3):352–61.

    Article  CAS  PubMed  Google Scholar 

  79. Gilliet M, Cao W, Liu Y-J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8(8):594–606.

    Article  CAS  PubMed  Google Scholar 

  80. Siegal FP, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284(5421):1835–7.

    Article  CAS  PubMed  Google Scholar 

  81. Lande R, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.

    Article  CAS  PubMed  Google Scholar 

  82. Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 2006;25(3):383–92.

    Article  CAS  PubMed  Google Scholar 

Melanocytes in Skin Immune System

  1. Nordlund JJ. The melanocyte and the epidermal melanin unit: an expanded concept. Dermatol Clin. 2007;25(3):271–81, vii.

    Article  CAS  PubMed  Google Scholar 

  2. Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24(3):401–10.

    Article  CAS  PubMed  Google Scholar 

  3. Plonka PM, et al. What are melanocytes really doing all day long…? Exp Dermatol. 2009;18(9):799–819.

    Article  CAS  PubMed  Google Scholar 

  4. Tolleson WH. Human melanocyte biology, toxicology, and pathology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2005;23(2):105–61.

    Article  PubMed  CAS  Google Scholar 

  5. Cichorek M, et al. Skin melanocytes: biology and development. Postepy Dermatol Alergol. 2013;30(1):30–41.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feller L, et al. Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation. Head Face Med. 2014;10(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hearing VJ. Milestones in melanocytes/melanogenesis. J Invest Dermatol. 2011;131(E1):E1.

    Article  PubMed  Google Scholar 

  8. Lu Y, et al. Melanocytes are potential immunocompetent cells: evidence from recognition of immunological characteristics of cultured human melanocytes. Pigment Cell Res. 2002;15(6):454–60.

    Article  CAS  PubMed  Google Scholar 

  9. Mackintosh JA. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol. 2001;211(2):101–13.

    Article  CAS  PubMed  Google Scholar 

  10. Hari A, et al. Toll-like receptors: role in dermatological disease. Mediators Inflamm. 2010;2010:437246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34.

    Article  CAS  PubMed  Google Scholar 

  12. Yu N, et al. Cultured human melanocytes express functional toll-like receptors 2–4, 7 and 9. J Dermatol Sci. 2009;56(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  13. Jin SH, Kang HY. Activation of Toll-like receptors 1, 2, 4, 5, and 7 on human melanocytes modulate pigmentation. Ann Dermatol. 2010;22(4):486–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahn JH, et al. Human melanocytes express functional Toll-like receptor 4. Exp Dermatol. 2008;17(5):412–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ahn JH, Jin SH, Kang HY. LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch Dermatol Res. 2008;300(6):325–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tam I, Stepien K. Secretion of proinflammatory cytokines by normal human melanocytes in response to lipopolysaccharide. Acta Biochim Pol. 2011;58(4):507–11.

    CAS  PubMed  Google Scholar 

  17. Smit N, et al. Expression of different immunological markers by cultured human melanocytes. Arch Dermatol Res. 1993;285(6):356–65.

    Article  CAS  PubMed  Google Scholar 

  18. Yohn JJ, et al. Modulation of melanocyte intercellular adhesion molecule-1 by immune cytokines. J Invest Dermatol. 1990;95(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ebanks JP, Wickett RR, Boissy RE. Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. Int J Mol Sci. 2009;10(9):4066–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vavricka CJ, Christensen BM, Li J. Melanization in living organisms: a perspective of species evolution. Protein Cell. 2010;1(9):830–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fuentes M, et al. Antifungal activity of melanin in clinical isolates of Candida spp. Rev Chilena Infectol. 2014;31(1):28–33.

    Article  PubMed  Google Scholar 

  22. Burkhart CG, Burkhart CN. The mole theory: primary function of melanocytes and melanin may be antimicrobial defense and immunomodulation (not solar protection). Int J Dermatol. 2005;44(4):340–2.

    Article  PubMed  Google Scholar 

  23. Wood JM, et al. What’s the use of generating melanin? Exp Dermatol. 1999;8(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  24. Mohagheghpour N, et al. Synthetic melanin suppresses production of proinflammatory cytokines. Cell Immunol. 2000;199(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  25. Gunathilake R, et al. pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J Invest Dermatol. 2009;129(7):1719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rocha IM, Guillo LA. Lipopolysaccharide and cytokines induce nitric oxide synthase and produce nitric oxide in cultured normal human melanocytes. Arch Dermatol Res. 2001;293(5):245–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fecker LF, et al. Inducible nitric oxide synthase is expressed in normal human melanocytes but not in melanoma cells in response to tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide. J Invest Dermatol. 2002;118(6):1019–25.

    Article  CAS  PubMed  Google Scholar 

  28. Miniati A, et al. Stimulated human melanocytes express and release interleukin-8, which is inhibited by luteolin: relevance to early vitiligo. Clin Exp Dermatol. 2014;39(1):54–7.

    Article  CAS  PubMed  Google Scholar 

  29. Luger TA, et al. New insights into the functions of alpha-MSH and related peptides in the immune system. Ann N Y Acad Sci. 2003;994:133–40.

    Article  CAS  PubMed  Google Scholar 

  30. Luger TA, et al. The role of alpha-MSH as a modulator of cutaneous inflammation. Ann N Y Acad Sci. 2000;917:232–8.

    Article  CAS  PubMed  Google Scholar 

  31. Le Poole IC, et al. Phagocytosis by normal human melanocytes in vitro. Exp Cell Res. 1993;205(2):388–95.

    Article  PubMed  Google Scholar 

  32. Schraermeyer U, et al. Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp Eye Res. 1999;68(2):237–45.

    Article  CAS  PubMed  Google Scholar 

  33. Orlow SJ. Melanosomes are specialized members of the lysosomal lineage of organelles. J Invest Dermatol. 1995;105(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  34. Le Poole IC, et al. A novel, antigen-presenting function of melanocytes and its possible relationship to hypopigmentary disorders. J Immunol. 1993;151(12):7284–92.

    PubMed  Google Scholar 

Dermal Monocyte-Derived Cells and Macrophages: Organization, Immune Function, and Relation to the Dendritic Cell Compartment

  1. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, et al. Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity. 2014;41:465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Romani N, Brunner PM, Stingl G. Changing views of the role of Langerhans cells. J Investig Dermatol. 2012;132:872–81.

    Article  CAS  PubMed  Google Scholar 

  4. Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA. Normal human dermis contains distinct populations of CD11c + BDCA-1+ dendritic cells and CD163 + FXIIIA+ macrophages. J Clin Invest. 2007;117:2517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angel CE, Lala A, Chen CJ, Edgar SG, Ostrovsky LL, Dunbar PR. CD14+ antigen-presenting cells in human dermis are less mature than their CD1a + counterparts. Int Immunol. 2007;19:1271–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X-N, McGovern N, Gunawan M, Richardson C, Windebank M, Siah T-W, et al. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. J Invest Dermatol. 2013;134(4):965–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013;140:22–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bigley V, Spence LE, Collin M. Connecting the dots: monocyte/DC and NK subsets in human peripheral blood. Blood. 2010;116:2859–60.

    Article  CAS  PubMed  Google Scholar 

  9. Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I, et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med. 2009;206:371–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol. 1993;151:6535–45.

    CAS  PubMed  Google Scholar 

  11. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity Elsevier Inc. 2012;37:60–73.

    CAS  Google Scholar 

  12. Schutz F, Hackstein H. Identification of novel dendritic cell subset markers in human blood. Biochem Biophys Res Commun. 2014;443(2):453–7.

    Article  CAS  PubMed  Google Scholar 

  13. Dutertre C-A, Jourdain J-P, Rancez M, Amraoui S, Fossum E, Bogen B, et al. TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8α + −equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques. J Immunol Am Asso Immunol. 2014;192:4697–708.

    CAS  Google Scholar 

  14. Galibert L, Diemer GS, Liu Z, Johnson RS, Smith JL, Walzer T, et al. Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J Biol Chem. 2005;280:21955–64.

    Article  CAS  PubMed  Google Scholar 

  15. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8 + dendritic cells. J Exp Med. 2010;207:1261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem. 2008;283:16693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8 + dendritic cells. J Exp Med. 2010;207:1283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med. 2010;207:1273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol. 2014;15:98–108.

    Article  CAS  PubMed  Google Scholar 

  20. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, et al. Langerin-expressing dendritic cells in human tissues are related to CD1c + dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol. 2015;97:627–34.

    Article  CAS  PubMed  Google Scholar 

  21. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. CD1c + blood dendritic cells have Langerhans cell potential. Blood. 2015;125:470–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lenz A, Heine M, Schuler G, Romani N. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest Am Soc Clin Invest. 1993;92:2587–96.

    Article  CAS  Google Scholar 

  23. Angel CE, George E, Brooks AES, Ostrovsky LL, Brown TLH, Dunbar PR. Cutting edge: CD1a + antigen-presenting cells in human dermis respond rapidly to CCR7 ligands. J Immunol. 2006;176:5730–4.

    Article  CAS  PubMed  Google Scholar 

  24. Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J, et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood. 2009;113:1257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morandi B, Bonaccorsi I, Mesiti M, Conte R, Carrega P, Costa G, et al. Characterization of human afferent lymph dendritic cells from seroma fluids. J Immunol. 2013;191:4858–66.

    Article  CAS  PubMed  Google Scholar 

  27. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 2008;29:497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matthews K, Chung NP, Klasse PJ, Moore JP, Sanders RW. Potent induction of antibody-secreting B cells by human dermal-derived CD14+ dendritic cells triggered by dual TLR ligation. J Immunol. 2012;189:5729–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Gruijl TD, Sombroek CC, Lougheed SM, Oosterhoff D, Buter J, van den Eertwegh AJ, et al. A postmigrational switch among skin-derived dendritic cells to a macrophage-like phenotype is predetermined by the intracutaneous cytokine balance. J Immunol. 2006;176:7232–42.

    Article  PubMed  Google Scholar 

  30. Larregina AT, Morelli AE, Spencer LA, Logar AJ, Watkins SC, Thomson AW, et al. Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol. 2001;2:1151–8.

    Article  CAS  PubMed  Google Scholar 

  31. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF + TNF alpha. J Exp Med. 1996;184:695–706.

    Article  CAS  PubMed  Google Scholar 

  32. Penel-Sotirakis K, Simonazzi E, Péguet-Navarro J, Rozières A. Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLoS One. 2012;7:e45680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morelli AE, Rubin JP, Erdos G, Tkacheva OA, Mathers AR, Zahorchak AF, et al. CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. J Immunol. 2005;175:7905–15.

    Article  CAS  PubMed  Google Scholar 

  34. Chu CC, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L, et al. Resident CD141 (BDCA3) + dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med. 2012;209:935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O’Bar A, et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood. 2010;116:1685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banchereau J, Thompson-Snipes L, Zurawski S, Blanck JP, Cao Y, Clayton S, et al. The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood. 2012;119:5742–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  CAS  PubMed  Google Scholar 

  39. Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC, Nograles KE, Pierson KC, Mitsui H, et al. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Investig Dermatol. 2010;130:2412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Willenborg S, Eming SA. Macrophages – sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges. 2014;12:214. –21–214–23.

    PubMed  Google Scholar 

  41. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262–9.

    Article  CAS  PubMed  Google Scholar 

  42. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118:2656–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365:127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.

    Article  CAS  PubMed  Google Scholar 

  45. Hutchins KD, Dickson DW, Rashbaum WK, Lyman WD. Localization of morphologically distinct microglial populations in the developing human fetal brain: implications for ontogeny. Brain Res Dev Brain Res. 1990;55:95–102.

    Article  CAS  PubMed  Google Scholar 

  46. Enzan H. Electron microscopic studies of macrophages in early human yolk sacs. Acta Pathol Jpn. 1986;36:49–64.

    CAS  PubMed  Google Scholar 

  47. Schuster C, Vaculik C, Prior M, Fiala C, Mildner M, Eppel W, et al. Phenotypic characterization of leukocytes in prenatal human dermis. J Investig Dermatol. 2012;132:2581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuster C, Vaculik C, Fiala C, Meindl S, Brandt O, Imhof M, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigen-presenting cells. J Exp Med Rockefeller Univ Press. 2009;206:169–81.

    CAS  Google Scholar 

  49. Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard J-M. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol Blackwell Publishing Ltd. 2011;20:145–6.

    Article  CAS  Google Scholar 

  50. Bigley V, Haniffa M, Doulatov S, Wang X-N, Dickinson R, McGovern N, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208:227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exper Med Rockefeller Univ Press. 2012;209:1167–81.

    CAS  Google Scholar 

  52. Foster CA, Holbrook KA, Farr AG. Ontogeny of Langerhans cells in human embryonic and fetal skin: expression of HLA-DR and OKT-6 determinants. J Invest Dermatol. 1986;86:240–3.

    Article  CAS  PubMed  Google Scholar 

  53. Dutertre C-A, Wang L-F, Ginhoux F. Aligning bona fide dendritic cell populations across species. Cell Immunol. 2014;291:3–10.

    Article  CAS  PubMed  Google Scholar 

  54. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cohn L, Chatterjee B, Esselborn F, Smed-Sörensen A, Nakamura N, Chalouni C, et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med Rockefeller Univ Press. 2013;210:1049–63.

    CAS  Google Scholar 

  56. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, et al. IRF4 transcription factor-dependent CD11b + dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38:970–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013;39:925–38.

    Article  CAS  PubMed  Google Scholar 

  58. Wollenberg A, Wagner M, Günther S, Towarowski A, Tuma E, Moderer M, et al. Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol. 2002;119:1096–102.

    Article  CAS  PubMed  Google Scholar 

  59. Chu C-C, Di Meglio P, Nestle FO. Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol. 2011;23:28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schäkel K, Hänsel A. News from dendritic cells in atopic dermatitis. Curr Opin Allergy Clin Immunol. 2011;11:445–50.

    Article  PubMed  Google Scholar 

  61. Odhiambo JA, Williams HC, Clayton TO, Robertson CF, Asher MI, ISAAC Phase Three Study Group. Global variations in prevalence of eczema symptoms in children from ISAAC phase three. J Allergy Clin Immunol. 2009;124:1251–8.e23.

    Article  PubMed  Google Scholar 

  62. Niebuhr M, Werfel T. Innate immunity, allergy and atopic dermatitis. Curr Opin Allergy Clin Immunol. 2010;10:463–8.

    Article  CAS  PubMed  Google Scholar 

  63. Leung DYM, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Invest Am Soc Clin Invest. 2004;113:651–7.

    Article  CAS  Google Scholar 

  64. Irvine AD, McLean WHI, Leung DYM. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365:1315–27.

    Article  CAS  PubMed  Google Scholar 

  65. Palmer CNA, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet Nature Publishing Group. 2006;38:441–6.

    Article  CAS  Google Scholar 

  66. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Whynot J, Novitskaya I, Cardinale I, et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol. 2007;119:1210–7.

    Article  CAS  PubMed  Google Scholar 

  67. Kiekens RC, Thepen T, Oosting AJ, Bihari IC, Van De Winkel JG, Bruijnzeel-Koomen CA, et al. Heterogeneity within tissue-specific macrophage and dendritic cell populations during cutaneous inflammation in atopic dermatitis. Br J Dermatol. 2001;145:957–65.

    Article  CAS  PubMed  Google Scholar 

  68. Wollenberg A, Kraft S, Hanau D, Bieber T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Invest Dermatol. 1996;106:446–53.

    Article  CAS  PubMed  Google Scholar 

  69. Oppel T, Schuller E, Günther S, Moderer M, Haberstok J, Bieber T, et al. Phenotyping of epidermal dendritic cells allows the differentiation between extrinsic and intrinsic forms of atopic dermatitis. Br J Dermatol. 2000;143:1193–8.

    Article  CAS  PubMed  Google Scholar 

  70. Novak N, Kraft S, Bieber T. Unraveling the mission of FcepsilonRI on antigen-presenting cells. J Allergy Clin Immunol. 2003;111:38–44.

    Article  CAS  PubMed  Google Scholar 

  71. Sugaya M, Miyagaki T, Ohmatsu H, Suga H, Kai H, Kamata M, et al. Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci. 2012;68:45–51.

    Article  CAS  PubMed  Google Scholar 

  72. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80.

    Article  CAS  PubMed  Google Scholar 

  73. Corrigan CJ, Jayaratnam A, Wang Y, Liu Y, de Waal Malefyt R, Meng Q, et al. Early production of thymic stromal lymphopoietin precedes infiltration of dendritic cells expressing its receptor in allergen-induced late phase cutaneous responses in atopic subjects. Allergy Blackwell Publishing Ltd. 2009;64:1014–22.

    CAS  Google Scholar 

  74. Han H, Headley MB, Xu W, Comeau MR, Zhou B, Ziegler SF. Thymic stromal lymphopoietin amplifies the differentiation of alternatively activated macrophages. J Immunol. 2013;190:904–12.

    Article  CAS  PubMed  Google Scholar 

  75. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90:525–30.

    Article  CAS  PubMed  Google Scholar 

  76. Bunikowski R, Mielke ME, Skarabis H, Worm M, Anagnostopoulos I, Kolde G, et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol. 2000;105:814–9.

    Article  CAS  PubMed  Google Scholar 

  77. Breuer K, HAussler S, Kapp A, Werfel T. Staphylococcus aureus: colonizing features and influence of an antibacterial treatment in adults with atopic dermatitis. Br J Dermatol. 2002;147:55–61.

    Article  CAS  PubMed  Google Scholar 

  78. Niebuhr M, Lutat C, Sigel S, Werfel T. Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy Blackwell Publishing Ltd. 2009;64:1580–7.

    CAS  Google Scholar 

  79. Hasannejad H, Takahashi R, Kimishima M, Hayakawa K, Shiohara T. Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis. J Allergy Clin Immunol. 2007;120:69–75.

    Article  CAS  PubMed  Google Scholar 

  80. Niebuhr M, Langnickel J, Draing C, Renz H, Kapp A, Werfel T. Dysregulation of toll-like receptor-2 (TLR-2)-induced effects in monocytes from patients with atopic dermatitis: impact of the TLR-2 R753Q polymorphism. Allergy. 2008;63:728–34.

    Article  CAS  PubMed  Google Scholar 

  81. Oh D-Y, Schumann RR, Hamann L, Neumann K, Worm M, Heine G. Association of the toll-like receptor 2 A-16934T promoter polymorphism with severe atopic dermatitis. Allergy. 2009;64:1608–15.

    Article  CAS  PubMed  Google Scholar 

  82. Gardembas-Pain M, Ifrah N, Foussard C, Boasson M, Saint Andre JP, Verret JL. Psoriasis after allogeneic bone marrow transplantation. Arch Dermatol. 1990;126:1523.

    Article  CAS  PubMed  Google Scholar 

  83. Eedy DJ, Burrows D, Bridges JM, Jones FG. Clearance of severe psoriasis after allogenic bone marrow transplantation. BMJ. 1990;300:908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nestle FO, Gilliet M, Liu Y-J. Plasmacytoid predendritic cells initiate psoriasis through interferon- production. J Exper Med [Internet]. 2005;202:135–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15998792.

  85. Zaba LC, Krueger JG, Lowes MA. Resident and “inflammatory” dendritic cells in human skin. J Investig Dermatol. 2009;129:302–8.

    Article  CAS  PubMed  Google Scholar 

  86. Hänsel A, Günther C, Ingwersen J, Starke J, Schmitz M, Bachmann M, et al. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol. 2011;127:787. –94.e1–9.

    Article  PubMed  CAS  Google Scholar 

  87. Hänsel A, Günther C, Baran W, Bidier M, Lorenz H-M, Schmitz M, et al. Human 6-sulfo LacNAc (slan) dendritic cells have molecular and functional features of an important pro-inflammatory cell type in lupus erythematosus. J Autoimmun. 2013;40:1–8.

    Article  PubMed  CAS  Google Scholar 

  88. Thomas K, Dietze K, Wehner R, Metz I, Tumani H, Schultheiß T, et al. Accumulation and therapeutic modulation of 6-sulfo LacNAc(+) dendritic cells in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm Lippincott Williams Wilkins. 2014;1:e33. –3.

    Article  Google Scholar 

  89. Ziegler-Heitbrock L, Hofer TPJ. Toward a refined definition of monocyte subsets. Front Immunol Frontiers. 2013;4:23.

    Google Scholar 

  90. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33:375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schakel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J, et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity. 2002;17:289–301.

    Article  CAS  PubMed  Google Scholar 

  92. Schäkel K, von Kietzell M, Hänsel A, Ebling A, Schulze L, Haase M, et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity. 2006;24:767–77.

    Article  PubMed  CAS  Google Scholar 

  93. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199:125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stratis A, Pasparakis M, Rupec RA, Markur D, Hartmann K, Scharffetter-Kochanek K, et al. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest. 2006;116:2094–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, van Rooijen N, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Invest. 2006;116:2105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gottlieb AB, Chamian F, Masud S, Cardinale I, Abello MV, Lowes MA, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005;175:2721–9.

    Article  CAS  PubMed  Google Scholar 

  97. Nickoloff BJ, Karabin GD, Barker JN, Griffiths CE, Sarma V, Mitra RS, et al. Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. Am J Pathol. 1991;138:129–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Valyi-Nagy I, Jensen PJ, Albelda SM, Rodeck U. Cytokine-induced expression of transforming growth factor-alpha and the epidermal growth factor receptor in neonatal skin explants. J Invest Dermatol. 1992;99:350–6.

    Article  CAS  PubMed  Google Scholar 

  99. Schultz GS, White M, Mitchell R, Brown G, Lynch J, Twardzik DR, et al. Epithelial wound healing enhanced by transforming growth factor-alpha and vaccinia growth factor. Science. 1987;235:350–2.

    Article  CAS  PubMed  Google Scholar 

  100. Detmar M, Brown LF, Claffey KP, Yeo KT, Kocher O, Jackman RW, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med. 1994;180:1141–6.

    Article  CAS  PubMed  Google Scholar 

  101. Sunderkötter C, Nikolic T, Dillon MJ, van Rooijen N, Stehling M, Drevets DA, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 2004;172:4410–7.

    Article  PubMed  Google Scholar 

  102. Nishiwaki S, Terakura S, Ito M, Goto T, Seto A, Watanabe K, et al. Impact of macrophage infiltration of skin lesions on survival after allogeneic stem cell transplantation: a clue to refractory graft-versus-host disease. Blood. 2009;114:3113–6.

    Article  CAS  PubMed  Google Scholar 

  103. Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE, Olver SD, et al. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest. 2014;124:4266–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sindrilaru A, Scharffetter-Kochanek K. Disclosure of the culprits: macrophages-versatile regulators of wound healing. Adv Wound Care (New Rochelle). 2013;2:357–68.

    Article  Google Scholar 

  105. Brancato SK, Albina JE. Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol. 2011;178:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175:2454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117:1219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975;78:71–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Goren I, Allmann N, Yogev N, Schürmann C, Linke A, Holdener M, et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol. 2009;175:132–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121:985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller W, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184:3964–77.

    Article  CAS  PubMed  Google Scholar 

  112. Lucas M, Stuart LM, Savill J, Lacy-Hulbert A. Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J Immunol. 2003;171:2610–5.

    Article  CAS  PubMed  Google Scholar 

  113. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ, et al. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985;152:668–89.

    Article  CAS  PubMed  Google Scholar 

  115. Peters T, Sindrilaru A, Hinz B, Hinrichs R, Menke A, Al-Azzeh EAD, et al. Wound-healing defect of CD18(−/−) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J. 2005;24:3400–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Endothelial Cells

  1. Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18(3):234–9.

    Article  CAS  PubMed  Google Scholar 

  2. Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res. 2010;88(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  3. Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Heidelberg: Springer; 2006.

    Book  Google Scholar 

  4. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91(10):3527–61.

    CAS  PubMed  Google Scholar 

  5. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    Article  CAS  PubMed  Google Scholar 

  6. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev. 2004;84(3):869–901.

    Article  CAS  PubMed  Google Scholar 

  7. Lee WL, Liles WC. Endothelial activation, dysfunction and permeability during severe infections. Curr Opin Hematol. 2011;18(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson JR, Seed MP, Kircher CH, et al. The codependence of angiogenesis and chronic inflammation. FASEB J. 1997;11:457–65.

    CAS  PubMed  Google Scholar 

  9. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells – conditional innate immune cells. J Hematol Oncol. 2013;6:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kenneth M. Janeway’s immune biology. 8th ed. Garland Science, Taylor & Francis Group, New York, LLC; 2013. p. 47.

    Google Scholar 

  11. Opitz B, Eitel J, Meixenberger K, Suttorp N. Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb Haemost. 2009;102(6):1103–9.

    CAS  PubMed  Google Scholar 

  12. Ancuta P, Moses A, Gabuzda D. Transendothelial migration of CD16+ monocytes in response to fractalkine under constitutive and inflammatory conditions. Immunobiology. 2004;209(1–2):11–20.

    Article  CAS  PubMed  Google Scholar 

  13. Anand AR, Cucchiarini M, Terwilliger EF, Ganju RK. The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells. J Immunol. 2008;180(8):5636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsou TC, Liou SH, Yeh SC, Tsai FY, Chao HR. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells. Toxicol Appl Pharmacol. 2013;273(3):492–9.

    Article  CAS  PubMed  Google Scholar 

  15. Geppert T, Lipsky P. Antigen presentation by interferon-gamma-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J Immunol. 1985;135:3750–62.

    CAS  PubMed  Google Scholar 

  16. Rothermel AL, Wang Y, Schechner J, Mook-Kanamori B, Aird WC, Pober JS, Tellides G, Johnson DR. Endothelial cells present antigens in vivo. BMC Immunol. 2004;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leeuwenberg JF, Van Damme J, Meager T, Jeunhomme TM, Buurman WA. Effects of tumor necrosis factor on the interferon-gamma-induced major histocompatibility complex class II antigen expression by human endothelial cells. Eur J Immunol. 1988;18(9):1469–72.

    Article  CAS  PubMed  Google Scholar 

  18. Klingenberg R, Autschbach F, Gleissner C, Giese T, Wambsganss N, Sommer N, Richter G, Katus HA, Dengler TJ. Endothelial inducible costimulator ligand expression is increased during human cardiac allograft rejection and regulates endothelial cell-dependent allo-activation of CD8+ T cells in vitro. Eur J Immunol. 2005;35(6):1712–21.

    Article  CAS  PubMed  Google Scholar 

  19. Lozanoska-Ochser B, Klein NJ, Huang GC, Alvarez RA, Peakman M. Expression of CD86 on human islet endothelial cells facilitates T cell adhesion and migration. J Immunol. 2008;181(9):6109–16.

    Article  CAS  PubMed  Google Scholar 

  20. Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW, Corthésy-Henrioud P, Capotosti F, Halin Winter C, Hugues S, Swartz MA. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J Immunol. 2014;192(11):5002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krishnaswamy G, Kelley J, Yerra L, Smith JK, Chi DS. Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res. 1999;19(2):91–104.

    Article  CAS  PubMed  Google Scholar 

  22. Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond). 2005;108(3):205–13.

    Article  CAS  Google Scholar 

  23. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A. Endothelial microparticles in diseases. Cell Tissue Res. 2009;335(1):143–51.

    Article  PubMed  Google Scholar 

  24. Wheway J, Latham SL, Combes V, Grau GE. Endothelial microparticles interact with and support the proliferation of T cells. J Immunol. 2014;193(7):3378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Batycka-Baran A, Paprocka M, Krawczenko A, Duś D, Szepietowski JC. Increased number of circulating endothelial cells (CECs) in patients with psoriasis – preliminary report. J Eur Acad Dermatol Venereol. 2014;28(1):116–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ammar M, Bouchlaka-Souissi C, Helms CA, Zaraa I, Jordan CT, Anbunathan H, Bouhaha R, Kouidhi S, Doss N, Dhaoui R, Ben Osman A, Ben Ammar El Gaied A, Marrakchi R, Mokni M, Bowcock AM. Genome-wide linkage scan for psoriasis susceptibility loci in multiplex Tunisian families. Br J Dermatol. 2013;168(3):583–7.

    Article  CAS  PubMed  Google Scholar 

  27. Harden JL, Lewis SM, Pierson KC, Suárez-Fariñas M, Lentini T, Ortenzio FS, Zaba LC, Goldbach-Mansky R, Bowcock AM, Lowes MA. CARD14 expression in dermal endothelial cells in psoriasis. PLoS One. 2014;9(11):e111255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Forkel S, Schön M, Hildmann A, Claßen A, John SM, Danker K, Schön MP. Inositoylated platelet-activating factor (Ino-C2-PAF) modulates dynamic lymphocyte-endothelial cell interactions and alleviates psoriasis-like skin inflammation in two complementary mouse models. J Invest Dermatol. 2014;134(10):2510–20.

    Article  CAS  PubMed  Google Scholar 

  29. Manam S, Tsakok T, Till S, Flohr C. The association between atopic dermatitis and food allergy in adults. Curr Opin Allergy Clin Immunol. 2014;14(5):423–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cheng LE, Sullivan BM, Retana LE, Allen CD, Liang HE, Locksley RM. IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J Exp Med. 2015;212(4):513–24. pii: jem.20141671. [Epub ahead of print].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Mast Cells as Versatile Immune Cells in the Skin

  1. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A. 1986;83(12):4464–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harvima IT, Nilsson G. Mast cells as regulators of skin inflammation and immunity. Acta Derm Venereol. 2011;91(6):644–50.

    Article  PubMed  CAS  Google Scholar 

  3. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179–90.

    Article  CAS  PubMed  Google Scholar 

  4. Supajatura V, Ushio H, Nakao A, et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest. 2002;109(10):1351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burke SM, Issekutz TB, Mohan K, Lee PW, Shmulevitz M, Marshall JS. Human mast cell activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8-dependent mechanism. Blood. 2008;111(12):5467–76.

    Article  CAS  PubMed  Google Scholar 

  6. Matsushima H, Yamada N, Matsue H, Shimada S. TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol. 2004;173(1):531–41.

    Article  CAS  PubMed  Google Scholar 

  7. Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature. 1996;381(6577):75–7.

    Article  CAS  PubMed  Google Scholar 

  8. Malaviya R, Ikeda T, Ross E, Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature. 1996;381(6577):77–80.

    Article  CAS  PubMed  Google Scholar 

  9. Bryce PJ, Miller ML, Miyajima I, Tsai M, Galli SJ, Oettgen HC. Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity. 2004;20(4):381–92.

    Article  CAS  PubMed  Google Scholar 

  10. Kawakami T, Kitaura J. Mast cell survival and activation by IgE in the absence of antigen: a consideration of the biologic mechanisms and relevance. J Immunol. 2005;175(7):4167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10(5):328–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malbec O, Daeron M. The mast cell IgG receptors and their roles in tissue inflammation. Immunol Rev. 2007;217:206–21.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Kepley CL, Morel PA, Okumoto LM, Fukuoka Y, Schwartz LB. Fc gamma RIIa, not Fc gamma RIIb, is constitutively and functionally expressed on skin-derived human mast cells. J Immunol. 2006;177(1):694–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okayama Y, Kirshenbaum AS, Metcalfe DD. Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: Up-regulation by IFN-gamma. J Immunol. 2000;164(8):4332–9.

    Article  CAS  PubMed  Google Scholar 

  15. Woolhiser MR, Okayama Y, Gilfillan AM, Metcalfe DD. IgG-dependent activation of human mast cells following up-regulation of FcgammaRI by IFN-gamma. Eur J Immunol. 2001;31(11):3298–307.

    Article  CAS  PubMed  Google Scholar 

  16. Marshall JS. Mast-cell responses to pathogens. Nat Rev Immunol. 2004;4(10):787–99.

    Article  CAS  PubMed  Google Scholar 

  17. Nilsson G, Johnell M, Hammer CH, et al. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol. 1996;157(4):1693–8.

    CAS  PubMed  Google Scholar 

  18. Prodeus AP, Zhou X, Maurer M, Galli SJ, Carroll MC. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature. 1997;390(6656):172–5.

    Article  CAS  PubMed  Google Scholar 

  19. Edelson BT, Stricker TP, Li Z, et al. Novel collectin/C1q receptor mediates mast cell activation and innate immunity. Blood. 2006;107(1):143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10(6):440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Metz M, Piliponsky AM, Chen CC, et al. Mast cells can enhance resistance to snake and honeybee venoms. Science. 2006;313(5786):526–30.

    Article  CAS  PubMed  Google Scholar 

  22. Maurer M, Wedemeyer J, Metz M, et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature. 2004;432(7016):512–6.

    Article  CAS  PubMed  Google Scholar 

  23. Piliponsky AM, Chen CC, Nishimura T, et al. Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med. 2008;14(4):392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell functions in vivo. Trends Immunol. 2012;33(12):613–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodewald HR, Feyerabend TB. Widespread immunological functions of mast cells: fact or fiction? Immunity. 2012;37(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  26. Siebenhaar F, Syska W, Weller K, et al. Control of Pseudomonas aeruginosa skin infections in mice is mast cell-dependent. Am J Pathol. 2007;170(6):1910–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McLachlan JB, Hart JP, Pizzo SV, et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol. 2003;4(12):1199–205.

    Article  CAS  PubMed  Google Scholar 

  28. Shelburne CP, Nakano H, St John AL, et al. Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe. 2009;6(4):331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McLachlan JB, Shelburne CP, Hart JP, et al. Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med. 2008;14(5):536–41.

    Article  CAS  PubMed  Google Scholar 

  30. McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF. The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine. 2009;27(27):3544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aoki R, Kawamura T, Goshima F, et al. Mast cells play a key role in host defense against herpes simplex virus infection through TNF-alpha and IL-6 production. J Invest Dermatol. 2013;133(9):2170–9.

    Article  CAS  PubMed  Google Scholar 

  32. Romo-Lozano Y, Hernandez-Hernandez F, Salinas E. Sporothrix schenckii yeasts induce ERK pathway activation and secretion of IL-6 and TNF-alpha in rat mast cells, but no degranulation. Med Mycol. 2014;52(8):862–8.

    Article  PubMed  Google Scholar 

  33. Maurer M, Lopez Kostka S, Siebenhaar F, et al. Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J. 2006;20(14):2460–7.

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94.

    Article  CAS  PubMed  Google Scholar 

  36. Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y. Mast cells in atopic dermatitis. Curr Opin Immunol. 2009;21(6):666–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinhoff M, Vergnolle N, Young SH, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000;6(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  38. Yosipovitch G, Greaves MW, Schmelz M. Itch. Lancet. 2003;361(9358):690–4.

    Article  PubMed  Google Scholar 

  39. Steinhoff M, Neisius U, Ikoma A, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23(15):6176–80.

    CAS  PubMed  Google Scholar 

  40. Leighty L, Li N, Diaz LA, Liu Z. Experimental models for the autoimmune and inflammatory blistering disease. Bullous pemphigoid. Arch Dermatol Res. 2007;299(9):417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen R, Ning G, Zhao ML, et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J Clin Invest. 2001;108(8):1151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nelson KC, Zhao M, Schroeder PR, et al. Role of different pathways of the complement cascade in experimental bullous pemphigoid. J Clin Invest. 2006;116(11):2892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Endoh I, Di Girolamo N, Hampartzoumian T, Cameron B, Geczy CL, Tedla N. Ultraviolet B irradiation selectively increases the production of interleukin-8 in human cord blood-derived mast cells. Clin Exp Immunol. 2007;148(1):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fairley JA, Burnett CT, Fu CL, Larson DL, Fleming MG, Giudice GJ. A pathogenic role for IgE in autoimmunity: bullous pemphigoid IgE reproduces the early phase of lesion development in human skin grafted to nu/nu mice. J Invest Dermatol. 2007;127(11):2605–11.

    Article  CAS  PubMed  Google Scholar 

  45. London VA, Kim GH, Fairley JA, Woodley DT. Successful treatment of bullous pemphigoid with omalizumab. Arch Dermatol. 2012;148(11):1241–3.

    Article  PubMed  Google Scholar 

  46. Fairley JA, Baum CL, Brandt DS, Messingham KA. Pathogenicity of IgE in autoimmunity: successful treatment of bullous pemphigoid with omalizumab. J Allergy Clin Immunol. 2009;123(3):704–5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ. Mast cell-associated TNF promotes dendritic cell migration. J Immunol. 2006;176(7):4102–12.

    Article  CAS  PubMed  Google Scholar 

  48. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol. 2007;8(10):1095–104.

    Article  CAS  PubMed  Google Scholar 

  49. Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008;8(6):478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP, Finlay-Jones JJ. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med. 1998;187(12):2045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alard P, Kurimoto I, Niizeki H, Doherty JM, Streilein JW. Hapten-specific tolerance induced by acute, low-dose ultraviolet B radiation of skin requires mast cell degranulation. Eur J Immunol. 2001;31(6):1736–46.

    Article  CAS  PubMed  Google Scholar 

  52. Ullrich SE, Nghiem DX, Khaskina P. Suppression of an established immune response by UVA – a critical role for mast cells. Photochem Photobiol. 2007;83(5):1095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ullrich SE, Byrne SN. The immunologic revolution: photoimmunology. J Invest Dermatol. 2012;132(3 Pt 2):896–905.

    Article  CAS  PubMed  Google Scholar 

  54. Byrne SN, Limon-Flores AY, Ullrich SE. Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol. 2008;180(7):4648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chacon-Salinas R, Limon-Flores AY, Chavez-Blanco AD, Gonzalez-Estrada A, Ullrich SE. Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol. 2011;186(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  56. Ch’ng S, Wallis RA, Yuan L, Davis PF, Tan ST. Mast cells and cutaneous malignancies. Mod Pathol. 2006;19(1):149–59.

    Article  PubMed  CAS  Google Scholar 

Granulocytes

  1. Kondo M, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806.

    Article  CAS  PubMed  Google Scholar 

  2. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    Article  CAS  PubMed  Google Scholar 

  3. Tam VC, Aderem A. Macrophage activation as an effector mechanism for cell-mediated immunity. J Immunol. 2014;193(7):3183–4.

    Article  CAS  PubMed  Google Scholar 

  4. Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012;34(2):261–80.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Arase H. Regulation of immune responses by neutrophils. Ann N Y Acad Sci. 2014;1319:66–81.

    Article  CAS  PubMed  Google Scholar 

  6. Pruchniak MP, Arazna M, Demkow U. Life of neutrophil: from stem cell to neutrophil extracellular trap. Respir Physiol Neurobiol. 2013;187(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  7. Verdrengh M, Tarkowski A. Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect Immun. 1997;65(7):2517–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mölne L, Verdrengh M, Tarkowski A. Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect Immun. 2000;68(11):6162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, McCune WJ, Kaplan MJ. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184(6):3284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coit P, Yalavarthi S, Ognenovski M, Zhao W, Hasni S, Wren JD, Kaplan MJ, Sawalha AH. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J Autoimmun. 2015;58:59–66. pii: S0896-8411(15)00005-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim MH, Granick JL, Kwok C, Walker NJ, Borjesson DL, Curry FR, Miller LS, Simon SI. Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood. 2011;117(12):3343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS, Rachid MA, Nicoli JR, Teixeira MM, Barcelos LS. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014;193(10):5171–80.

    Article  CAS  PubMed  Google Scholar 

  13. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11(3):e1004651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tauzin S, Starnes TW, Becker FB, Lam PY, Huttenlocher A. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. J Cell Biol. 2014;207(5):589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. William EP. Fundamental immunology. 7th ed. Philadelphia: Wolters Kluwer health/Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  16. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T. Nonredundant roles of basophils in immunity. Annu Rev Immunol. 2011;29:45–69.

    Article  CAS  PubMed  Google Scholar 

  17. Chirumbolo S. State-of-the-art review about basophil research in immunology and allergy: is the time right to treat these cells with the respect they deserve? Blood Transfus. 2012;10:148–64.

    PubMed  PubMed Central  Google Scholar 

  18. Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps (nets) formation. Immunology. 2014. doi:10.1111/imm.12437. [Epub ahead of print].

    Google Scholar 

  19. Dema B, Suzuki R, Rivera J. Rethinking the role of immunoglobulin E and its high-affinity receptor: new insights into allergy and beyond. Int Arch Allergy Immunol. 2014;164:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff JR, Monticelli LA, Noti M, Tait Wojno ED, Fung TC, Kubo M, Artis D. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193(7):3717–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13:9–22.

    Article  CAS  PubMed  Google Scholar 

  22. Jung Y, Rothenberg ME. Roles and regulation of gastrointestinal eosinophils in immunity and disease. J Immunol. 2014;193:999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Padigel UM, Lee JJ, Nolan TJ, Schad GA, Abraham D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun. 2006;74(6):3232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014;5:570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Esnault S, Kelly EA, Nettenstrom LM, Cook EB, Seroogy CM, Jarjour NN. Human eosinophils release IL-1ß and increase expression of IL-17A in activated CD4+ T lymphocytes. Clin Exp Allergy. 2012;42(12):1756–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walsh ER, Thakar J, Stokes K, Huang F, Albert R, August A. Computational and experimental analysis reveals a requirement for eosinophil-derived IL-13 for the development of allergic airway responses in C57BL/6 mice. J Immunol. 2011;186(5):2936–49.

    Article  CAS  PubMed  Google Scholar 

  27. Phipps S, Ying S, Wangoo A, Ong YE, Levi-Schaffer F, Kay AB. The relationship between allergen-induced tissue eosinophilia and markers of repair and remodeling in human atopic skin. J Immunol. 2002;169(8):4604–12.

    Article  CAS  PubMed  Google Scholar 

  28. Nakashima C, Otsuka A, Kitoh A, Honda T, Egawa G, Nakajima S, Nakamizo S, Arita M, Kubo M, Miyachi Y. Basophils regulate the recruitment of eosinophils in a murine model of irritant contact dermatitis. J Allergy Clin Immunol. 2014;134(1):100–7.

    Article  CAS  PubMed  Google Scholar 

T Cells in the Skin

  1. Nomura T, et al. The panoply of αβT cells in the skin. J Dermatol Sci. 2014;76(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  2. Mueller SN, et al. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol. 2013;31:137–61.

    Article  CAS  PubMed  Google Scholar 

  3. Clark RA, et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med. 2012;4(117):117ra7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Honda T, et al. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol. 2013;133(2):303–15.

    Article  CAS  PubMed  Google Scholar 

  5. Lazarevic V, Glimcher LH. T-bet in disease. Nat Immunol. 2011;12(7):597–606.

    Article  CAS  PubMed  Google Scholar 

  6. Kim BS, et al. Innate lymphoid cells and allergic inflammation. Curr Opin Immunol. 2013;25(6):738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vercelli D. Immunoglobulin E and its regulators. Curr Opin Allergy Clin Immunol. 2001;1(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kabashima K. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci. 2013;70(1):3–11.

    Article  PubMed  Google Scholar 

  9. Whitaker EL, et al. Interleukin 24: mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth Factor Rev. 2012;23(6):323–31.

    Article  CAS  PubMed  Google Scholar 

  10. Kurebayashi Y, et al. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells Devoted Mol Cell Mech. 2013;18(4):247–65.

    Article  CAS  Google Scholar 

  11. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  12. Veldhoen M, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–9.

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt E, et al. Th9 cells, new players in adaptive immunity. Trends Immunol. 2014;35(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  14. Schlapbach C, et al. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med. 2014;6(219):219ra218.

    Article  CAS  Google Scholar 

  15. Abbas AK, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):307–8.

    Article  CAS  PubMed  Google Scholar 

  16. Sather BD, et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissuespecific inflammatory disease. J Exp Med. 2007;204(6):1335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanchez Rodriguez R, et al. Memory regulatory T cells reside in human skin. J Clin Invest. 2014;124(3):1027–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tomura M, et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest. 2010;120(3):883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Honda T, et al. Regulatory T cells in cutaneous immune responses. J Dermatol Sci. 2011;63(2):75–82.

    CAS  PubMed  Google Scholar 

  20. Sakaguchi S, et al. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.

    Article  CAS  PubMed  Google Scholar 

  21. Halabi-Tawil M, et al. Cutaneous manifestations of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Br J Dermatol. 2009;160(3):645–51.

    Article  CAS  PubMed  Google Scholar 

  22. Weiner HL. The mucosal milieu creates tolerogenic dendritic cells and T(R)1 and T(H)3 regulatory cells. Nat Immunol. 2001;2(8):671–2.

    Article  CAS  PubMed  Google Scholar 

  23. Gagliani N, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19(6):739–46.

    Article  CAS  PubMed  Google Scholar 

  24. Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol. 2013;14(10):978–85.

    Article  CAS  PubMed  Google Scholar 

  25. Mackay LK, et al. The developmental pathway for CD103(+)CD8(+) tissue-resident memory T cells of skin. Nat Immunol. 2013;14(12):1294–301.

    Article  CAS  PubMed  Google Scholar 

  26. Shiohara T. Fixed drug eruption: pathogenesis and diagnostic tests. Curr Opin Allergy Clin Immunol. 2009;9(5):316–21.

    Article  PubMed  Google Scholar 

  27. Latha TS, et al. Gammadelta T cell-mediated immune responses in disease and therapy. Front Immunol. 2014;5:571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Born WK, et al. Diversity of gammadelta T-cell antigens. Cell Mol Immunol. 2013;10(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  29. Peters C, et al. Phenotype and regulation of immunosuppressive Vdelta 2-expressing gammadelta T cells. Cell Mol Life Sci. 2014;71(10):1943–60.

    Article  CAS  PubMed  Google Scholar 

  30. Chien YH, et al. Gammadelta T cells: first line of defense and beyond. Annu Rev Immunol. 2014;32:121–55.

    Article  CAS  PubMed  Google Scholar 

  31. Su D, et al. Roles of gammadelta T cells in the pathogenesis of autoimmune diseases. Clin Dev Immunol. 2013;2013:985753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Cutaneous Microecology

  1. Xiong DX: Modern microecology. Chinese science and technology, Beijing (2000).

    Google Scholar 

  2. Zhang X: Dermatology and venereology (8th Version). People’s Health Publication, Beijing (2012).

    Google Scholar 

  3. You B, Chen X, Wang L. Application of cutaneous probiotic cream in facial cosmetology. 2000; Chin J Microecol,12: 45–46.

    Google Scholar 

  4. Grice EA, Segre JA. The skin microbiome. 2011; Nat Rev Microbiol. 9:244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schloss PD. Microbiology: An integrated view of the skin microbiome. Nature. 2014;514(7520):44–5.

    Article  CAS  PubMed  Google Scholar 

  6. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallo RL. S. epidermidis influence on host immunity: More than skin deep. Cell Host Microbe. 2015;17(2):143–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, Gallo RL. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347(6217):67–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jahns AC, Lundskog B, Ganceviciene R, Palmer RH, Golovleva I, Zouboulis CC, McDowell A, Patrick S, Alexeyev OA. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. 2012;167(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kistowska M, Meier B, Proust T, Feldmeyer L, Cozzio A, Kuendig T, Contassot E, French LE. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135(1):110–8.

    Article  PubMed  Google Scholar 

  11. Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res. 2013;351(2):325–37.

    Article  CAS  PubMed  Google Scholar 

  12. Cogen AL, Nizet V, Gallo RL. (2008) Skin microbiota: a source of disease or defence? Br J Dermatol. 2008; 158: 442–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soares RC, Zani MB, Arruda AC, Arruda LH, Paulino LC. Malassezia intra-specific diversity and potentially new species in the skin microbiota from Brazilian healthy subjects and seborrheic dermatitis patients. PLoS One. 2015;10(2):e0117921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Probst AJ, Auerbach AK, Moissl-Eichinger C. Archaea on human skin. PLoS One. 2013;8(6):e65388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gorantla JN, Kumar SN, Nisha GV, Sumandu AS, Dileep C, Sudaresan A, Kumar MM, Lankalapalli RS, Kumar BS. Purification and characterization of antifungal phenazines from a fluorescent Pseudomonas strain FPO4 against medically important fungi. J Mycol Med. 2014;24(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  16. Treat J, James WD, Nachamkin I, Seykora JT. Growth inhibition of Trichophyton species by Pseudomonas aeruginosa. Arch Dermatol. 2007;143(1):61–4.

    Article  PubMed  Google Scholar 

  17. Kaur A, Thatai P, Sapra B. Need of UV protection and evaluation of efficacy of sunscreens. J Cosmet Sci. 2014;65(5):315–45.

    PubMed  Google Scholar 

  18. Sanchez DA, Nosanchuk JD, Friedman AJ. The skin microbiome: is there a role in the pathogenesis of atopic dermatitis and psoriasis. J Drugs Dermatol. 2015;14(2):127–30.

    PubMed  Google Scholar 

  19. Zeeuwen PL, Kleerebezem M, Timmerman HM, Schalkwijk J. Microbiome and skin diseases. Curr Opin Allergy Clin Immunol. 2013;13(5):514–20.

    Article  CAS  PubMed  Google Scholar 

  20. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mathieu A, Vogel TM, Simonet P. The future of skin metagenomics. Res Microbiol. 2014;165(2):69–76.

    Article  CAS  PubMed  Google Scholar 

  22. Nagao K, Udey MC. Mushrooming insights into skin dendritic cell physiology. Immunity. 2015;42(2):210–3.

    Article  CAS  PubMed  Google Scholar 

Co-regulation of Epidermal Permeability Barrier and Cutaneous Immunity

  1. Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125:183–200.

    Article  CAS  PubMed  Google Scholar 

  2. Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays. 2002;24:789–800.

    Article  CAS  PubMed  Google Scholar 

  3. Feingold KR. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res. 2007;48:2531–46.

    Article  CAS  PubMed  Google Scholar 

  4. Feingold KR, Man MQ, Menon GK, Cho SS, Brown BE, Elias PM. Cholesterol synthesis is required for cutaneous barrier function in mice. J Clin Invest. 1990;86:1738–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holleran W, Feingold KR, Man MQ, Gao WN, Lee JM, Elias PM. Regulation of epidermal sphingolipid synthesis by permeability barrier function. J Lipid Res. 1991;32:1151–8.

    CAS  PubMed  Google Scholar 

  6. Mao-Qiang M, Elias PM, Feingold KR. Fatty acids are required for permeability barrier homeostasis. J Clin Invest. 1993;92:791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feingold KR. The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res. 2009;50:S417–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest. 2005;115:1777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitsutake S, Suzuki C, Akiyama M, Tsuji K, Yanagi T, Shimizu H, et al. ABCA12 dysfunction causes a disorder in glucosylceramide accumulation during keratinocyte differentiation. J Dermatol Sci. 2010;60:128–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sakai K, Akiyama M, Sugiyama-Nakagiri Y, McMillan JR, Sawamura D, Shimizu H. Localization of ABCA12 from Golgi apparatus to lamellar granules in human upper epidermal keratinocytes. Exp Dermatol. 2007;16:920–6.

    Article  CAS  PubMed  Google Scholar 

  11. Mao-Qiang M, Brown BE, Wu-Pong S, Feingold KR, Elias PM. Exogenous nonphysiologic vs physiologic lipids. Divergent mechanisms for correction of permeability barrier dysfunction. Arch Dermatol. 1995;131:809–16.

    Article  CAS  PubMed  Google Scholar 

  12. Mao-Qiang M, Feingold KR, Jain M, Elias PM. Extracelluar processing of phospholipids is required for barrier homeostasis. J Lipid Res. 1995;36:1925–35.

    CAS  PubMed  Google Scholar 

  13. Mao-Qiang M, Jain M, Feingold KR, Elias PM. Secretory phospholipase A2 activity is required for barrier homeostasis. J Invest Dermatol. 1996;106:57–63.

    Article  CAS  PubMed  Google Scholar 

  14. Holleran WM, Takagi Y, Menon GK, Legler G, Feingold KR, Elias PM. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest. 1993;91:1656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, et al. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J Lipid Res. 2000;41:2071–82.

    CAS  PubMed  Google Scholar 

  16. Wolf R, Orion E, Ruocco E, Ruocco V. Abnormal epidermal barrier in the pathogenesis of psoriasis. Clin Dermatol. 2012;30:323–8.

    Article  PubMed  Google Scholar 

  17. Wolf R, Wolf D. Abnormal epidermal barrier in the pathogenesis of atopic dermatitis. Clin Dermatol. 2012;30:329–34.

    Article  PubMed  Google Scholar 

  18. Ye L, Lv C, Man G, Song S, Elias PM, Man MQ. Abnormal epidermal barrier recovery in uninvolved skin supports the notion of an epidermal pathogenesis of psoriasis. J Invest Dermatol. 2014. doi:10.1038/jid.2014.205.

    Google Scholar 

  19. Elias PM, Williams ML, Feingold KR. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders. Clin Dermatol. 2012;30:311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elias PM, Crumrine D, Paller A, Rodriguez-Martin M, Williams ML. Pathogenesis of the cutaneous phenotype in inherited disorders of cholesterol metabolism: therapeutic implications for topical treatment of these disorders. Dermatoendocrinol. 2011;3:100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang YJ, Lu B, Crumrine D, Man MQ, Elias PM, Feingold KR. IL-1alpha accelerates stratum corneum formation and improves permeability barrier homeostasis during murine fetal development. J Dermatol Sci. 2009;54:88–98.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang YJ, Lu B, Crumrine D, Elias PM, Feingold KR. IL-6 stimulates but is not essential for stratum corneum formation and permeability barrier development during gestation. Exp Dermatol. 2010;19:e31–6.

    Article  PubMed  Google Scholar 

  23. Choi EH, Man MQ, Xu P, Xin S, Liu Z, Crumrine DA, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127:2847–56.

    Article  CAS  PubMed  Google Scholar 

  24. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95:2281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barland CO, Zettersten E, Brown BS, Ye J, Elias PM, Ghadially R. Imiquimod-induced interleukin-1 alpha stimulation improves barrier homeostasis in aged murine epidermis. J Invest Dermatol. 2004;122:330–6.

    Article  CAS  PubMed  Google Scholar 

  26. Jung YJ, Jung M, Kim M, Hong SP, Choi EH. IL-1α stimulation restores epidermal permeability and antimicrobial barriers compromised by topical tacrolimus. J Invest Dermatol. 2011;131:698–705.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai JC, Feingold KR, Crumrine D, Wood LC, Grunfeld C, Elias PM. Permeability barrier disruption alters the localization and expression of TNF alpha/protein in the epidermis. Arch Dermatol Res. 1994;286:242–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J Clin Invest. 1992;90:482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wood LC, Stalder AK, Liou A, Campbell IL, Grunfeld C, Elias PM, et al. Barrier disruption increases gene expression of cytokines and the 55 kD TNF receptor in murine skin. Exp Dermatol. 1997;6:98–104.

    Article  CAS  PubMed  Google Scholar 

  30. Wood LC, Elias PM, Sequeira-Martin SM, Grunfeld C, Feingold KR. Occlusion lowers cytokine mRNA levels in essential fatty acid-deficient and normal mouse epidermis, but not after acute barrier disruption. J Invest Dermatol. 1994;103:834–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wood LC, Elias PM, Calhoun C, Tsai JC, Grunfeld C, Feingold KR. Barrier disruption stimulates interleukin-1 alpha expression and release from a pre-formed pool in murine epidermis. J Invest Dermatol. 1996;106:397–403.

    Article  CAS  PubMed  Google Scholar 

  32. Wood LC, Feingold KR, Sequeira-Martin SM, Elias PM, Grunfeld C. Barrier function coordinately regulates epidermal IL-1 and IL-1 receptor antagonist mRNA levels. Exp Dermatol. 1994;3:56–60.

    Article  CAS  PubMed  Google Scholar 

  33. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.

    Article  CAS  PubMed  Google Scholar 

  34. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.

    CAS  PubMed  Google Scholar 

  36. Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem. 2003;278:174–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002;3:499.

    Article  CAS  PubMed  Google Scholar 

  38. Jurk M, Kritzler A, Schulte B, Tluk S, Schetter C, Krieg AM, et al. Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides. Eur J Immunol. 2006;36:1815–26.

    Article  CAS  PubMed  Google Scholar 

  39. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2007;303:1526–9.

    Article  CAS  Google Scholar 

  40. Kawai K, Shimura H, Minagawa M, Ito A, Tomiyama K, Ito M. Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci. 2002;30:185–94.

    Article  CAS  PubMed  Google Scholar 

  41. Mempel M, Voelcker V, Köllisch G, Plank C, Rad R, Gerhard M, et al. Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol. 2003;121:1389–96.

    Article  CAS  PubMed  Google Scholar 

  42. Song PI, Park YM, Abraham T, Harten B, Zivony A, Neparidze N, et al. Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol. 2002;119:424–32.

    Article  CAS  PubMed  Google Scholar 

  43. Pivarcsi A, Bodai L, Réthi B, Kenderessy-Szabó A, Koreck A, Széll M, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol. 2003;15:721–30.

    Article  CAS  PubMed  Google Scholar 

  44. Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L. Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol. 2003;148:670–9.

    Article  CAS  PubMed  Google Scholar 

  45. Miller LS, Sørensen OE, Liu PT, Jalian HR, Eshtiaghpour D, Behmanesh BE, et al. TGF-alpha regulates TLR expression and function on epidermal keratinocytes. J Immunol. 2005;174:6137–43.

    Article  CAS  PubMed  Google Scholar 

  46. Köllisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology. 2005;114:531–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lv CZ, Man M, Zhang XJ, Feingold KR, Elias PM, Man MQ. Cutaneous expression of Toll-like receptor 2 and 4 in various dermatitis models. Chin J Dermatovenereol. 2009;23:390–2.

    Google Scholar 

  48. Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol. 2013;133:988–98.

    Article  CAS  PubMed  Google Scholar 

  49. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156:1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sugawara T, Iwamoto N, Akashi M, Kojima T, Hisatsune J, Sugai M, et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci. 2013;70:12–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner JM. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol. 2013;133:1161–9.

    Article  CAS  PubMed  Google Scholar 

  52. Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 2011;187:3230–7.

    Article  CAS  PubMed  Google Scholar 

  53. Borkowski AW, Park K, Uchida Y, Gallo RL. Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation, and epidermal organelles. J Invest Dermatol. 2013;133:2031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borkowski AW, Kuo IH, Bernard JJ, Yoshida T, Williams MR, Hung NJ, et al. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage. J Invest Dermatol. 2014. doi:10.1038/jid.2014.354.

    Google Scholar 

  55. Akazawa Y, Yuki T, Yoshida H, Sugiyama Y, Inoue S. Activation of TRPV4 strengthens the tight-junction barrier in human epidermal keratinocytes. Skin Pharmacol Physiol. 2013;26:15–21.

    Article  CAS  PubMed  Google Scholar 

  56. Aberg KM, Man MQ, Gallo RL, Ganz T, Crumrine D, Brown BE, et al. Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol. 2008;128:917–25.

    Article  CAS  PubMed  Google Scholar 

  57. Ahrens K, Schunck M, Podda GF, Meingassner J, Stuetz A, Schröder JM, et al. Mechanical and metabolic injury to the skin barrier leads to increased expression of murine β-defensin-1, −3, and −14. J Invest Dermatol. 2011;131:443–52.

    Article  CAS  PubMed  Google Scholar 

  58. Rodriguez-Martin M, Martin-Ezquerra G, Man MQ, Hupe M, Youm JK, Mackenzie DS, et al. Expression of epidermal CAMP changes in parallel with permeability barrier status. J Invest Dermatol. 2011;131:2263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hong SP, Kim MJ, Jung MY, Jeon H, Goo J, Ahn SK, et al. Biopositive effects of low-dose UVB on epidermis: coordinate up-regulation of antimicrobial peptides and permeability barrier reinforcement. J Invest Dermatol. 2008;128:2880–7.

    Article  CAS  PubMed  Google Scholar 

  60. Hou M, Sun R, Hupe M, Kim PL, Park K, Crumrine D, et al. Topical apigenin improves epidermal permeability barrier homoeostasis in normal murine skin by divergent mechanisms. Exp Dermatol. 2013;22:210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hou M, Man M, Man W, Zhu W, Hupe M, Park K, et al. Topical hesperidin improves epidermal permeability barrier function and epidermal differentiation in normal murine skin. Exp Dermatol. 2012;21:337–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Man M, Hupe M, Mackenzie D, Kim H, Oda Y, Crumrine D, et al. A topical Chinese herbal mixture improves epidermal permeability barrier function in normal murine skin. Exp Dermatol. 2011;20:285–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wanke I, Skabytska Y, Kraft B, Peschel A, Biedermann T, Schittek B. Staphylococcus aureus skin colonization is promoted by barrier disruption and leads to local inflammation. Exp Dermatol. 2013;22:153–5.

    Article  CAS  PubMed  Google Scholar 

  64. Ray TL, Wuepper KD. Experimental cutaneous candidiasis in rodents; II. Role of the stratum corneum barrier and serum complement as a mediator of a protective inflammatory response. Arch Dermatol. 1978;114:539–43.

    Article  CAS  PubMed  Google Scholar 

  65. Darmstadt GL, Saha SK, Ahmed AS, Chowdhury MA, Law PA, Ahmed S, et al. Effect of topical treatment with skin barrier-enhancing emollients on nosocomial infections in preterm infants in Bangladesh: a randomised controlled trial. Lancet. 2005;365:1039–45.

    Article  CAS  PubMed  Google Scholar 

  66. Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10:440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malaviya R, Ross EA, MacGregor JI, Ikeda T, Little JR, Jakschik BA, et al. Mast cell phagocytosis of FimH-expressing enterobacteria. J Immunol. 1994;152:1907–14.

    CAS  PubMed  Google Scholar 

  68. Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol. 2003;170:2274–8.

    Article  PubMed  Google Scholar 

  69. von Köckritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–80.

    Article  CAS  Google Scholar 

  70. Mazzoni A, Young HA, Spitzer JH, Visintin A, Segal DM. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J Clin Invest. 2001;108:1865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M. Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol. 2011;41:1883–93.

    Article  CAS  PubMed  Google Scholar 

  72. Lin TK, Man MQ, Santiago JL, Park K, Roelandt T, Oda Y, et al. Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol. 2013;133:469–78.

    Article  CAS  PubMed  Google Scholar 

  73. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8:935–47.

    Article  CAS  PubMed  Google Scholar 

  74. Proksch E, Brasch J, Sterry W. Integrity of the permeability barrier regulates epidermal Langerhans cell density. Br J Dermatol. 1996;134:630–8.

    Article  CAS  PubMed  Google Scholar 

  75. Proksch E, Brasch J. Influence of epidermal permeability barrier disruption and Langerhans’ cell density on allergic contact dermatitis. Acta Derm Venereol. 1997;77:102–4.

    CAS  PubMed  Google Scholar 

  76. Katoh N, Hirano S, Kishimoto S, Yasuno H. Acute cutaneous barrier perturbation induces maturation of Langerhans’ cells in hairless mice. Acta Derm Venereol. 1997;77:365–9.

    CAS  PubMed  Google Scholar 

  77. Nishijima T, Tokura Y, Imokawa G, Seo N, Furukawa F, Takigawa M. Altered permeability and disordered cutaneous immunoregulatory function in mice with acute barrier disruption. J Invest Dermatol. 1997;109:175–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Wang , Qing-Sheng Mi , Yuxiao Hong , Florent Ginhoux , Changlong Lu MD, PhD , Song Zheng , Hong Fang , Mao-Qiang Man , Xiaoqin Wang , Qing-Sheng Mi , Yuxiao Hong , Florent Ginhoux , Song Zheng , Changlong Lu MD, PhD , Hong Fang or Mao-Qiang Man .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, X. et al. (2017). Cells in the Skin. In: Gao, XH., Chen, HD. (eds) Practical Immunodermatology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0902-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0902-4_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0900-0

  • Online ISBN: 978-94-024-0902-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics