Pathology and Pathogenesis of Yersinia pestis

  • Zongmin DuEmail author
  • Xiaoyi Wang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 918)


Various types of animal models of plague have been developed, including mice, rats, guinea pigs, and nonhuman primates. Studies have indicated that rodent and nonhuman primate models of pneumonic plague closely resemble the human disease and that the pathologic changes that occur during bubonic plague are very similar in rodents, nonhuman primates, and humans. In this section, the pathological changes caused by Y. pestis in different animal models are described. The bacterium Y. pestis causes deadly plague, whereas the other two closely related enteropathogenic Yersinia species merely cause limited gastrointestinal manifestations. Y. pestis has unique virulence mechanisms that enable it to be a successful flea-borne and highly virulent pathogen. Massive gene losses and inactivation play important roles, as well as the gene acquisitions, in the evolution process of this pathogen. Here, we summarized several newly acquired features of Y. pestis, including the unique lipid A modification, biofilm formation ability, and loss of adhesions for enteric colonization that are realized by gene inactivation and plasminogen activator and F1 capsular that are realized by gene acquisition, which contribute to the unique transmission and pathogenesis of Y. pestis.


Y. pestis Pathology Pathogenesis Molecular mechanism 


  1. 1.
    Smiley ST. Immune defense against pneumonic plague. Immunol Rev. 2008;225:256–71.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Smiley ST. Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines. 2008;7(2):209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, et al. Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology. 2008;154(Pt 7):1939–48.PubMedCrossRefGoogle Scholar
  4. 4.
    Sha J, Agar SL, Baze WB, Olano JP, Fadl AA, Erova TE, et al. Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague. Infect Immun. 2008;76(4):1390–409.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lathem WW, Crosby SD, Miller VL, Goldman WE. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A. 2005;102(49):17786–91.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bubeck SS, Cantwell AM, Dube PH. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infect Immun. 2007;75(2):697–705.PubMedCrossRefGoogle Scholar
  7. 7.
    Sebbane F, Jarrett C, Gardner D, Long D, Hinnebusch BJ. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun. 2009;77(3):1222–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Sebbane F, Gardner D, Long D, Gowen BB, Hinnebusch BJ. Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol. 2005;166(5):1427–39.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lemaitre N, Sebbane F, Long D, Hinnebusch BJ. Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect Immun. 2006;74(9):5126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Baze WB, et al. Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92. Microbes Infect/Institut Pasteur. 2009;11(2):205–14.CrossRefGoogle Scholar
  11. 11.
    Jones SM, Griffin KF, Hodgson I, Williamson ED. Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine. 2003;21(25–26):3912–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhancui D, Yonghai Y, Shouhong Y, Yi Z, Zhimin Y, Aipin Z, et al. Pathology of in guinea pigs infected with plague bacillus. Mod Prev Med. 2015;42(5):899–901.Google Scholar
  13. 13.
    Cornelius CA, Quenee LE, Overheim KA, Koster F, Brasel TL, Elli D, et al. Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague. Infect Immun. 2008;76(12):5588–97.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Andel RV, Sherwood R, Gennings C, Lyons CR, Hutt J, Gigliotti A, et al. Clinical and pathologic features of Cynomolgus Macaques (Macaca fascicularis) infected with aerosolized Yersinia pestis. Comp Med. 2008;58(1):68–75.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Koster F, Perlin DS, Park S, Brasel T, Gigliotti A, Barr E, et al. Milestones in progression of primary pneumonic plague in cynomolgus macaques. Infect Immun. 2010;78(7):2946–55.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tian G, Qiu Y, Qi Z, Wu X, Zhang Q, Bi Y, et al. Histopathological observation of immunized rhesus macaques with plague vaccines after subcutaneous infection of Yersinia pestis. PLoS One. 2011;6(4):e19260.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhang Q, Wang Q, Tian G, Qi Z, Zhang X, Wu X, et al. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques. Hum Vacci Immunother. 2014;10(2):1–10.CrossRefGoogle Scholar
  18. 18.
    Tian G, Qi Z, Qiu Y, Wu X, Zhang Q, Yang X, et al. Comparison of virulence between the Yersinia pestis Microtus 201, an avirulent strain to humans, and the vaccine strain EV in rhesus macaques, Macaca mulatta. Hum Vaccin Immunother. 2015;10(12):3552–60.CrossRefGoogle Scholar
  19. 19.
    Finegold MJ, Petery JJ, Berendt RF, Adams HR. Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis. Am J Pathol. 1968;53(1):99–114.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Guarner J, Shieh WJ, Greer PW, Gabastou JM, Chu M, Hayes E, et al. Immunohistochemical detection of Yersinia pestis in formalin-fixed, paraffin-embedded tissue. Am J Clin Pathol. 2002;117:205–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999;96(24):14043–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 2004;101(38):13826–31.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Armougom F, Bitam I, Croce O, Merhej V, Barassi L, Nguyen TT, et al. Genomic insights into a new Citrobacter koseri strain revealed gene exchanges with the virulence-associated Yersinia pestis pPCP1 plasmid. Front Microbiol. 2016;7:340.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kukkonen M, Suomalainen M, Kyllonen P, Lahteenmaki K, Lang H, Virkola R, et al. Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol. 2004;51(1):215–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006;7(10):1066–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002;70(8):4092–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Prentice MB, Rahalison L. Plague. Lancet. 2007;369:1196–207.PubMedCrossRefGoogle Scholar
  28. 28.
    Hinnebusch BJ. Biofilm-dependent and biofilm-independent mechanisms of transmission of Yersinia pestis by fleas. Adv Exp Med Biol. 2012;954:237–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190(4):783–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 2011;79(2):533–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun YC, Guo XP, Hinnebusch BJ, Darby C. The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT. J Bacteriol. 2012;194(8):2020–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sun YC, Hinnebusch BJ, Darby C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A. 2008;105(23):8097–101.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sun YC, Jarrett CO, Bosio CF, Hinnebusch BJ. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe. 2014;15(5):578–86.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Heise T, Dersch P. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc Natl Acad Sci U S A. 2006;103(9):3375–80.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Marra A, Isberg RR. Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer’s patch intestinal epithelium. Infect Immun. 1997;65(8):3412–21.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Rosqvist R, Skurnik M, Wolf-Watz H. Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature. 1988;334(6182):522–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Casutt-Meyer S, Renzi F, Schmaler M, Jann NJ, Amstutz M, Cornelis GR. Oligomeric coiled-coil adhesin YadA is a double-edged sword. PLoS One. 2010;5(12):e15159.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Muhlenkamp M, Oberhettinger P, Leo JC, Linke D, Schutz MS. Yersinia adhesin A (YadA)–beauty & beast. Int J Med Microbiol. 2015;305(2):252–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Sodeinde OA, Goguen JD. Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect Immun. 1988;56(10):2743–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zimbler DL, Schroeder JA, Eddy JL, Lathem WW. Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat Commun. 2015;6:7487.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lahteenmaki K, Virkola R, Saren A, Emody L, Korhonen TK. Expression of plasminogen activator pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun. 1998;66(12):5755–62.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Friedlander AM, Welkos SL, Worsham PL, Andrews GP, Heath DG, Anderson Jr GW, et al. Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis. Clin Infect Dis. 1995;21 Suppl 2:S178–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Drozdov IG, Anisimov AP, Samoilova SV, Yezhov IN, Yeremin SA, Karlyshev AV, et al. Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. J Med Microbiol. 1995;42(4):264–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Sha J, Endsley JJ, Kirtley ML, Foltz SM, Huante MB, Erova TE, et al. Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol. 2011;49(5):1708–15.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Samoilova SV, Samoilova LV, Yezhov IN, Drozdov IG, Anisimov AP. Virulence of pPst + and pPst- strains of Yersinia pestis for guinea-pigs. J Med Microbiol. 1996;45(6):440–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Du Y, Rosqvist R, Forsberg A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun. 2002;70(3):1453–60.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun. 2010;78(5):2045–52.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect/Institut Pasteur. 2011;13(10):808–17.CrossRefGoogle Scholar
  49. 49.
    Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun. 1997;65(5):1659–68.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Fetherston JD, Bertolino VJ, Perry RD. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol. 1999;32(2):289–99.PubMedCrossRefGoogle Scholar
  51. 51.
    Sebbane F, Jarrett C, Gardner D, Long D, Hinnebusch BJ. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague. PLoS One. 2010;5(12):e14379.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pieper R, Huang ST, Parmar PP, Clark DJ, Alami H, Fleischmann RD, et al. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiol. 2010;10:30.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bearden SW, Perry RD. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol. 1999;32(2):403–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lindler LE, Tall BD. Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol. 1993;8(2):311–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Payne D, Tatham D, Williamson ED, Titball RW. The pH 6 antigen of Yersinia pestis binds to beta1-linked galactosyl residues in glycosphingolipids. Infect Immun. 1998;66(9):4545–8.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Galvan EM, Chen H, Schifferli DM. The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun. 2007;75(3):1272–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Bao R, Nair MK, Tang WK, Esser L, Sadhukhan A, Holland RL, et al. Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(3):1065–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Zav’yalov VP, Abramov VM, Cherepanov PG, Spirina GV, Chernovskaya TV, Vasiliev AM, et al. pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol. 1996;14(1):53–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Huang XZ, Lindler LE. The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun. 2004;72(12):7212–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Felek S, Tsang TM, Krukonis ES. Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun. 2010;78(10):4134–50.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lindler LE, Klempner MS, Straley SC. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun. 1990;58(8):2569–77.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Anisimov AP, Bakhteeva IV, Panfertsev EA, Svetoch TE, Kravchenko TB, Platonov ME, et al. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice. J Med Microbiol. 2009;58(Pt 1):26–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Felek S, Krukonis ES. The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun. 2009;77(2):825–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Kolodziejek AM, Schnider DR, Rohde HN, Wojtowicz AJ, Bohach GA, Minnich SA, et al. Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect Immun. 2010;78(12):5233–43.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pierson DE. Mutations affecting lipopolysaccharide enhance ail-mediated entry of Yersinia enterocolitica into mammalian cells. J Bacteriol. 1994;176(13):4043–51.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Bartra SS, Styer KL, O’Bryant DM, Nilles ML, Hinnebusch BJ, Aballay A, et al. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun. 2008;76(2):612–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, et al. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure. 2011;19(11):1672–82.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Miller VL, Beer KB, Heusipp G, Young BM, Wachtel MR. Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol. 2001;41(5):1053–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Tsang TM, Felek S, Krukonis ES. Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun. 2010;78(8):3358–68.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ho DK, Riva R, Kirjavainen V, Jarva H, Ginstrom E, Blom AM, et al. Functional recruitment of the human complement inhibitor C4BP to Yersinia pseudotuberculosis outer membrane protein Ail. J Immunol. 2012;188(9):4450–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Schesser Bartra S, Ding Y, Fujimoto LM, Ring JG, Jain V, Ram S, et al. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin. Microbiology. 2015;116(11):2174–83.CrossRefGoogle Scholar
  73. 73.
    Forman S, Wulff CR, Myers-Morales T, Cowan C, Perry RD. Straley SC: yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun. 2008;76(2):578–87.PubMedCrossRefGoogle Scholar
  74. 74.
    Uittenbogaard AM, Myers-Morales T, Gorman AA, Welsh E, Wulff C, Hinnebusch BJ, et al. Temperature-dependence of yadBC phenotypes in Yersinia pestis. Microbiology. 2014;160(Pt 2):396–405.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lukaszewski RA, Kenny DJ, Taylor R, Rees DG, Hartley MG, Oyston PC. Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun. 2005;73(11):7142–50.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, et al. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev. 1998;62(4):1315–52.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Pujol C, Klein KA, Romanov GA, Palmer LE, Cirota C, Zhao Z, et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun. 2009;77(6):2251–61.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pujol C, Grabenstein JP, Perry RD, Bliska JB. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A. 2005;102(36):12909–14.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Spinner JL, Winfree S, Starr T, Shannon JG, Nair V, Steele-Mortimer O, et al. Yersinia pestis survival and replication within human neutrophil phagosomes and uptake of infected neutrophils by macrophages. J Leukoc Biol. 2014;95(3):389–98.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Torres R, Swift RV, Chim N, Wheatley N, Lan B, Atwood BR, et al. Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis. PLoS One. 2011;6(9):e25084.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Torres R, Lan B, Latif Y, Chim N, Goulding CW. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 4):1074–85.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Torres R, Chim N, Sankaran B, Pujol C, Bliska JB, Goulding CW. Structural insights into RipC, a putative citrate lyase beta subunit from a Yersinia pestis virulence operon. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2012;68(Pt 1):2–7.CrossRefGoogle Scholar
  83. 83.
    Grabenstein JP, Marceau M, Pujol C, Simonet M, Bliska JB. The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun. 2004;72(9):4973–84.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, et al. The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun. 2000;68(6):3419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss AM, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS One. 2014;9(7):e103541.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bozue J, Mou S, Moody KL, Cote CK, Trevino S, Fritz D, et al. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Microb Pathog. 2011;50(6):314–21.PubMedCrossRefGoogle Scholar
  87. 87.
    Bartra SS, Gong X, Lorica CD, Jain C, Nair MK, Schifferli D, et al. The outer membrane protein A (OmpA) of Yersinia pestis promotes intracellular survival and virulence in mice. Microb Pathog. 2012;52(1):41–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Klein KA, Fukuto HS, Pelletier M, Romanov G, Grabenstein JP, Palmer LE, et al. A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. J Bacteriol. 2012;194(3):653–62.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Maldonado-Arocho FJ, Green C, Fisher ML, Paczosa MK, Mecsas J. Adhesins and host serum factors drive Yop translocation by yersinia into professional phagocytes during animal infection. PLoS Pathog. 2013;9(6):e1003415.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O. Plague bacteria target immune cells during infection. Science. 2005;309(5741):1739–41.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, et al. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med. 2002;196(8):1017–24.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Black DS, Bliska JB. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 1997;16(10):2730–44.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Persson C, Carballeira N, Wolf-Watz H, Fallman M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 1997;16(9):2307–18.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Black DS, Marie-Cardine A, Schraven B, Bliska JB. The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell Microbiol. 2000;2(5):401–14.PubMedCrossRefGoogle Scholar
  95. 95.
    Yao T, Mecsas J, Healy JI, Falkow S, Chien Y. Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J Exp Med. 1999;190(9):1343–50.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Alonso A, Bottini N, Bruckner S, Rahmouni S, Williams S, Schoenberger SP, et al. Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH. J Biol Chem. 2004;279(6):4922–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Andersson K, Magnusson KE, Majeed M, Stendahl O, Fallman M. Yersinia pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effector YopH. Infect Immun. 1999;67(5):2567–74.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Rolan HG, Durand EA, Mecsas J. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe. 2013;14(3):306–17.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol. 2008;11(1):21–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Trosky JE, Liverman AD, Orth K. Yersinia outer proteins: Yops. Cell Microbiol. 2008;10(3):557–65.PubMedCrossRefGoogle Scholar
  101. 101.
    Navarro L, Koller A, Nordfelth R, Wolf-Watz H, Taylor S, Dixon JE. Identification of a molecular target for the Yersinia protein kinase A. Mol Cell. 2007;26(4):465–77.PubMedCrossRefGoogle Scholar
  102. 102.
    Prehna G, Ivanov MI, Bliska JB, Stebbins CE. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell. 2006;126(5):869–80.PubMedCrossRefGoogle Scholar
  103. 103.
    Trasak C, Zenner G, Vogel A, Yuksekdag G, Rost R, Haase I, et al. Yersinia protein kinase YopO is activated by a novel G-actin binding process. J Biol Chem. 2007;282(4):2268–77.PubMedCrossRefGoogle Scholar
  104. 104.
    Dukuzumuremyi JM, Rosqvist R, Hallberg B, Akerstrom B, Wolf-Watz H, Schesser K. The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J Biol Chem. 2000;275(45):35281–90.PubMedCrossRefGoogle Scholar
  105. 105.
    Juris SJ, Rudolph AE, Huddler D, Orth K, Dixon JE. A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc Natl Acad Sci U S A. 2000;97(17):9431–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Letzelter M, Sorg I, Mota LJ, Meyer S, Stalder J, Feldman M, et al. The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J. 2006;25(13):3223–33.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hakansson S, Galyov EE, Rosqvist R, Wolf-Watz H. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol Microbiol. 1996;20(3):593–603.PubMedCrossRefGoogle Scholar
  108. 108.
    Bear JE, Gertler FB. Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci. 2009;122(Pt 12):1947–53.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bierne H, Miki H, Innocenti M, Scita G, Gertler FB, Takenawa T, et al. WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. J Cell Sci. 2005;118(Pt 7):1537–47.PubMedCrossRefGoogle Scholar
  110. 110.
    Auerbuch V, Loureiro JJ, Gertler FB, Theriot JA, Portnoy DA. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol. 2003;49(5):1361–75.PubMedCrossRefGoogle Scholar
  111. 111.
    Park H, Teja K, O'Shea JJ, Siegel RM. The Yersinia effector protein YpkA induces apoptosis independently of actin depolymerization. J Immunol. 2007;178(10):6426–34.PubMedCrossRefGoogle Scholar
  112. 112.
    Wiley DJ, Nordfeldth R, Rosenzweig J, DaFonseca CJ, Gustin R, Wolf-Watz H, et al. The Ser/Thr kinase activity of the Yersinia protein kinase A (YpkA) is necessary for full virulence in the mouse, mollifying phagocytes, and disrupting the eukaryotic cytoskeleton. Microb Pathog. 2006;40(5):234–43.PubMedCrossRefGoogle Scholar
  113. 113.
    Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell. 2002;109(5):575–88.PubMedCrossRefGoogle Scholar
  114. 114.
    Shao F, Vacratsis PO, Bao Z, Bowers KE, Fierke CA, Dixon JE. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc Natl Acad Sci U S A. 2003;100(3):904–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J Mol Biol. 2001;312(4):807–21.PubMedCrossRefGoogle Scholar
  116. 116.
    Skrzypek E, Cowan C, Straley SC. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol Microbiol. 1998;30(5):1051–65.PubMedCrossRefGoogle Scholar
  117. 117.
    LaRock CN, Cookson BT. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe. 2012;12(6):799–805.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kerschen EJ, Cohen DA, Kaplan AM, Straley SC. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect Immun. 2004;72(8):4589–602.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    McPhee JB, Mena P, Zhang Y, Bliska JB. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun. 2012;80(7):2519–27.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Viboud GI, Bliska JB. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol. 2005;59:69–89.PubMedCrossRefGoogle Scholar
  121. 121.
    Straley SC, Cibull ML. Differential clearance and host-pathogen interactions of YopE- and YopK- YopL- Yersinia pestis in BALB/c mice. Infect Immun. 1989;57(4):1200–10.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Holmstrom A, Rosqvist R, Wolf-Watz H, Forsberg A. Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect Immun. 1995;63(6):2269–76.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Holmstrom A, Rosqvist R, Wolf-Watz H, Forsberg A. YopK, a novel virulence determinant of Yersinia pseudotuberculosis. Contrib Microbiol Immunol. 1995;13:239–43.PubMedGoogle Scholar
  124. 124.
    Holmstrom A, Petterson J, Rosqvist R, Hakansson S, Tafazoli F, Fallman M, et al. YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Mol Microbiol. 1997;24(1):73–91.PubMedCrossRefGoogle Scholar
  125. 125.
    Dewoody R, Merritt PM, Houppert AS, Marketon MM. YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol Microbiol. 2011;79(6):1445–61.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Dewoody R, Merritt PM, Marketon MM. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol. 2013;87(2):301–17.PubMedCrossRefGoogle Scholar
  127. 127.
    Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe. 2010;7(5):376–87.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Thorslund SE, Edgren T, Pettersson J, Nordfelth R, Sellin ME, Ivanova E, et al. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS One. 2011;6(2):e16784.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Butler T. Plague into the 21st century. Clin Infect Dis. 2009;49(5):736–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Sing A, Reithmeier-Rost D, Granfors K, Hill J, Roggenkamp A, Heesemann J. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Proc Natl Acad Sci U S A. 2005;102(44):16049–54.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Comer JE, Sturdevant DE, Carmody AB, Virtaneva K, Gardner D, Long D, et al. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun. 2010;78(12):5086–98.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bergsbaken T, Cookson BT. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation. J Leukoc Biol. 2009;86(5):1153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Guinet F, Ave P, Jones L, Huerre M, Carniel E. Defective innate cell response and lymph node infiltration specify Yersinia pestis infection. PLoS One. 2008;3(2):e1688.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Rogers JV, Choi YW, Giannunzio LF, Sabourin PJ, Bornman DM, Blosser EG, et al. Transcriptional responses in spleens from mice exposed to Yersinia pestis CO92. Microb Pathog. 2007;43(2–3):67–77.PubMedCrossRefGoogle Scholar
  135. 135.
    Galindo CL, Moen ST, Kozlova EV, Sha J, Garner HR, Agar SL, et al. Comparative analyses of transcriptional profiles in mouse organs using a pneumonic plague model after infection with wild-type Yersinia pestis CO92 and its Braun lipoprotein mutant. Comp Funct Genomics. 2009;2009:914762.PubMedCrossRefGoogle Scholar
  136. 136.
    Liu H, Wang H, Qiu J, Wang X, Guo Z, Qiu Y, et al. Transcriptional profiling of a mice plague model: insights into interaction between Yersinia pestis and its host. J Basic Microbiol. 2009;49(1):92–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Du Z, Yang H, Tan Y, Tian G, Zhang Q, Cui Y, et al. Transcriptomic response to Yersinia pestis: RIG-I like receptor signaling response is detrimental to the host against plague. J Genet Genomics Yi chuan xue bao. 2014;41(7):379–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Beijing Institute of Microbiology and EpidemiologyBeijingChina

Personalised recommendations