Skip to main content

Pathology and Pathogenesis of Yersinia pestis

  • Chapter
  • First Online:
Book cover Yersinia pestis: Retrospective and Perspective

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 918))

Abstract

Various types of animal models of plague have been developed, including mice, rats, guinea pigs, and nonhuman primates. Studies have indicated that rodent and nonhuman primate models of pneumonic plague closely resemble the human disease and that the pathologic changes that occur during bubonic plague are very similar in rodents, nonhuman primates, and humans. In this section, the pathological changes caused by Y. pestis in different animal models are described. The bacterium Y. pestis causes deadly plague, whereas the other two closely related enteropathogenic Yersinia species merely cause limited gastrointestinal manifestations. Y. pestis has unique virulence mechanisms that enable it to be a successful flea-borne and highly virulent pathogen. Massive gene losses and inactivation play important roles, as well as the gene acquisitions, in the evolution process of this pathogen. Here, we summarized several newly acquired features of Y. pestis, including the unique lipid A modification, biofilm formation ability, and loss of adhesions for enteric colonization that are realized by gene inactivation and plasminogen activator and F1 capsular that are realized by gene acquisition, which contribute to the unique transmission and pathogenesis of Y. pestis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smiley ST. Immune defense against pneumonic plague. Immunol Rev. 2008;225:256–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smiley ST. Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines. 2008;7(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, et al. Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology. 2008;154(Pt 7):1939–48.

    Article  CAS  PubMed  Google Scholar 

  4. Sha J, Agar SL, Baze WB, Olano JP, Fadl AA, Erova TE, et al. Braun lipoprotein (Lpp) contributes to virulence of yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague. Infect Immun. 2008;76(4):1390–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lathem WW, Crosby SD, Miller VL, Goldman WE. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A. 2005;102(49):17786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bubeck SS, Cantwell AM, Dube PH. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infect Immun. 2007;75(2):697–705.

    Article  CAS  PubMed  Google Scholar 

  7. Sebbane F, Jarrett C, Gardner D, Long D, Hinnebusch BJ. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun. 2009;77(3):1222–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sebbane F, Gardner D, Long D, Gowen BB, Hinnebusch BJ. Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol. 2005;166(5):1427–39.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lemaitre N, Sebbane F, Long D, Hinnebusch BJ. Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect Immun. 2006;74(9):5126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Baze WB, et al. Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92. Microbes Infect/Institut Pasteur. 2009;11(2):205–14.

    Article  CAS  Google Scholar 

  11. Jones SM, Griffin KF, Hodgson I, Williamson ED. Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine. 2003;21(25–26):3912–8.

    Article  CAS  PubMed  Google Scholar 

  12. Zhancui D, Yonghai Y, Shouhong Y, Yi Z, Zhimin Y, Aipin Z, et al. Pathology of in guinea pigs infected with plague bacillus. Mod Prev Med. 2015;42(5):899–901.

    Google Scholar 

  13. Cornelius CA, Quenee LE, Overheim KA, Koster F, Brasel TL, Elli D, et al. Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague. Infect Immun. 2008;76(12):5588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andel RV, Sherwood R, Gennings C, Lyons CR, Hutt J, Gigliotti A, et al. Clinical and pathologic features of Cynomolgus Macaques (Macaca fascicularis) infected with aerosolized Yersinia pestis. Comp Med. 2008;58(1):68–75.

    PubMed  PubMed Central  Google Scholar 

  15. Koster F, Perlin DS, Park S, Brasel T, Gigliotti A, Barr E, et al. Milestones in progression of primary pneumonic plague in cynomolgus macaques. Infect Immun. 2010;78(7):2946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian G, Qiu Y, Qi Z, Wu X, Zhang Q, Bi Y, et al. Histopathological observation of immunized rhesus macaques with plague vaccines after subcutaneous infection of Yersinia pestis. PLoS One. 2011;6(4):e19260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Q, Wang Q, Tian G, Qi Z, Zhang X, Wu X, et al. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques. Hum Vacci Immunother. 2014;10(2):1–10.

    Article  CAS  Google Scholar 

  18. Tian G, Qi Z, Qiu Y, Wu X, Zhang Q, Yang X, et al. Comparison of virulence between the Yersinia pestis Microtus 201, an avirulent strain to humans, and the vaccine strain EV in rhesus macaques, Macaca mulatta. Hum Vaccin Immunother. 2015;10(12):3552–60.

    Article  Google Scholar 

  19. Finegold MJ, Petery JJ, Berendt RF, Adams HR. Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis. Am J Pathol. 1968;53(1):99–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guarner J, Shieh WJ, Greer PW, Gabastou JM, Chu M, Hayes E, et al. Immunohistochemical detection of Yersinia pestis in formalin-fixed, paraffin-embedded tissue. Am J Clin Pathol. 2002;117:205–9.

    Article  PubMed  Google Scholar 

  21. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999;96(24):14043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 2004;101(38):13826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Armougom F, Bitam I, Croce O, Merhej V, Barassi L, Nguyen TT, et al. Genomic insights into a new Citrobacter koseri strain revealed gene exchanges with the virulence-associated Yersinia pestis pPCP1 plasmid. Front Microbiol. 2016;7:340.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kukkonen M, Suomalainen M, Kyllonen P, Lahteenmaki K, Lang H, Virkola R, et al. Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol Microbiol. 2004;51(1):215–25.

    Article  CAS  PubMed  Google Scholar 

  25. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006;7(10):1066–73.

    Article  CAS  PubMed  Google Scholar 

  26. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002;70(8):4092–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prentice MB, Rahalison L. Plague. Lancet. 2007;369:1196–207.

    Article  PubMed  Google Scholar 

  28. Hinnebusch BJ. Biofilm-dependent and biofilm-independent mechanisms of transmission of Yersinia pestis by fleas. Adv Exp Med Biol. 2012;954:237–43.

    Article  CAS  PubMed  Google Scholar 

  29. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190(4):783–92.

    Article  PubMed  Google Scholar 

  30. Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 2011;79(2):533–51.

    Article  CAS  PubMed  Google Scholar 

  31. Sun YC, Guo XP, Hinnebusch BJ, Darby C. The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT. J Bacteriol. 2012;194(8):2020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun YC, Hinnebusch BJ, Darby C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A. 2008;105(23):8097–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun YC, Jarrett CO, Bosio CF, Hinnebusch BJ. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe. 2014;15(5):578–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heise T, Dersch P. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc Natl Acad Sci U S A. 2006;103(9):3375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marra A, Isberg RR. Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer’s patch intestinal epithelium. Infect Immun. 1997;65(8):3412–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosqvist R, Skurnik M, Wolf-Watz H. Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature. 1988;334(6182):522–4.

    Article  CAS  PubMed  Google Scholar 

  37. Casutt-Meyer S, Renzi F, Schmaler M, Jann NJ, Amstutz M, Cornelis GR. Oligomeric coiled-coil adhesin YadA is a double-edged sword. PLoS One. 2010;5(12):e15159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Muhlenkamp M, Oberhettinger P, Leo JC, Linke D, Schutz MS. Yersinia adhesin A (YadA)–beauty & beast. Int J Med Microbiol. 2015;305(2):252–8.

    Article  PubMed  CAS  Google Scholar 

  39. Sodeinde OA, Goguen JD. Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect Immun. 1988;56(10):2743–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zimbler DL, Schroeder JA, Eddy JL, Lathem WW. Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat Commun. 2015;6:7487.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lahteenmaki K, Virkola R, Saren A, Emody L, Korhonen TK. Expression of plasminogen activator pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun. 1998;66(12):5755–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Friedlander AM, Welkos SL, Worsham PL, Andrews GP, Heath DG, Anderson Jr GW, et al. Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis. Clin Infect Dis. 1995;21 Suppl 2:S178–81.

    Article  PubMed  Google Scholar 

  43. Drozdov IG, Anisimov AP, Samoilova SV, Yezhov IN, Yeremin SA, Karlyshev AV, et al. Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. J Med Microbiol. 1995;42(4):264–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sha J, Endsley JJ, Kirtley ML, Foltz SM, Huante MB, Erova TE, et al. Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol. 2011;49(5):1708–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Samoilova SV, Samoilova LV, Yezhov IN, Drozdov IG, Anisimov AP. Virulence of pPst + and pPst- strains of Yersinia pestis for guinea-pigs. J Med Microbiol. 1996;45(6):440–4.

    Article  CAS  PubMed  Google Scholar 

  46. Du Y, Rosqvist R, Forsberg A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun. 2002;70(3):1453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun. 2010;78(5):2045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect/Institut Pasteur. 2011;13(10):808–17.

    Article  CAS  Google Scholar 

  49. Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun. 1997;65(5):1659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fetherston JD, Bertolino VJ, Perry RD. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol. 1999;32(2):289–99.

    Article  CAS  PubMed  Google Scholar 

  51. Sebbane F, Jarrett C, Gardner D, Long D, Hinnebusch BJ. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague. PLoS One. 2010;5(12):e14379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pieper R, Huang ST, Parmar PP, Clark DJ, Alami H, Fleischmann RD, et al. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiol. 2010;10:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bearden SW, Perry RD. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol. 1999;32(2):403–14.

    Article  CAS  PubMed  Google Scholar 

  54. Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lindler LE, Tall BD. Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol. 1993;8(2):311–24.

    Article  CAS  PubMed  Google Scholar 

  56. Payne D, Tatham D, Williamson ED, Titball RW. The pH 6 antigen of Yersinia pestis binds to beta1-linked galactosyl residues in glycosphingolipids. Infect Immun. 1998;66(9):4545–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Galvan EM, Chen H, Schifferli DM. The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun. 2007;75(3):1272–9.

    Article  CAS  PubMed  Google Scholar 

  58. Bao R, Nair MK, Tang WK, Esser L, Sadhukhan A, Holland RL, et al. Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(3):1065–70.

    Article  CAS  PubMed  Google Scholar 

  59. Zav’yalov VP, Abramov VM, Cherepanov PG, Spirina GV, Chernovskaya TV, Vasiliev AM, et al. pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol. 1996;14(1):53–7.

    Article  PubMed  Google Scholar 

  60. Huang XZ, Lindler LE. The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun. 2004;72(12):7212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Felek S, Tsang TM, Krukonis ES. Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun. 2010;78(10):4134–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lindler LE, Klempner MS, Straley SC. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun. 1990;58(8):2569–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Anisimov AP, Bakhteeva IV, Panfertsev EA, Svetoch TE, Kravchenko TB, Platonov ME, et al. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice. J Med Microbiol. 2009;58(Pt 1):26–36.

    Article  CAS  PubMed  Google Scholar 

  64. Felek S, Krukonis ES. The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun. 2009;77(2):825–36.

    Article  CAS  PubMed  Google Scholar 

  65. Kolodziejek AM, Schnider DR, Rohde HN, Wojtowicz AJ, Bohach GA, Minnich SA, et al. Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect Immun. 2010;78(12):5233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pierson DE. Mutations affecting lipopolysaccharide enhance ail-mediated entry of Yersinia enterocolitica into mammalian cells. J Bacteriol. 1994;176(13):4043–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bartra SS, Styer KL, O’Bryant DM, Nilles ML, Hinnebusch BJ, Aballay A, et al. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun. 2008;76(2):612–22.

    Article  CAS  PubMed  Google Scholar 

  68. Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, et al. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure. 2011;19(11):1672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller VL, Beer KB, Heusipp G, Young BM, Wachtel MR. Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol. 2001;41(5):1053–62.

    Article  CAS  PubMed  Google Scholar 

  70. Tsang TM, Felek S, Krukonis ES. Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun. 2010;78(8):3358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ho DK, Riva R, Kirjavainen V, Jarva H, Ginstrom E, Blom AM, et al. Functional recruitment of the human complement inhibitor C4BP to Yersinia pseudotuberculosis outer membrane protein Ail. J Immunol. 2012;188(9):4450–9.

    Article  CAS  PubMed  Google Scholar 

  72. Schesser Bartra S, Ding Y, Fujimoto LM, Ring JG, Jain V, Ram S, et al. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin. Microbiology. 2015;116(11):2174–83.

    Article  CAS  Google Scholar 

  73. Forman S, Wulff CR, Myers-Morales T, Cowan C, Perry RD. Straley SC: yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun. 2008;76(2):578–87.

    Article  CAS  PubMed  Google Scholar 

  74. Uittenbogaard AM, Myers-Morales T, Gorman AA, Welsh E, Wulff C, Hinnebusch BJ, et al. Temperature-dependence of yadBC phenotypes in Yersinia pestis. Microbiology. 2014;160(Pt 2):396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lukaszewski RA, Kenny DJ, Taylor R, Rees DG, Hartley MG, Oyston PC. Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun. 2005;73(11):7142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, et al. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev. 1998;62(4):1315–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pujol C, Klein KA, Romanov GA, Palmer LE, Cirota C, Zhao Z, et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun. 2009;77(6):2251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pujol C, Grabenstein JP, Perry RD, Bliska JB. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A. 2005;102(36):12909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Spinner JL, Winfree S, Starr T, Shannon JG, Nair V, Steele-Mortimer O, et al. Yersinia pestis survival and replication within human neutrophil phagosomes and uptake of infected neutrophils by macrophages. J Leukoc Biol. 2014;95(3):389–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Torres R, Swift RV, Chim N, Wheatley N, Lan B, Atwood BR, et al. Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis. PLoS One. 2011;6(9):e25084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Torres R, Lan B, Latif Y, Chim N, Goulding CW. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 4):1074–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Torres R, Chim N, Sankaran B, Pujol C, Bliska JB, Goulding CW. Structural insights into RipC, a putative citrate lyase beta subunit from a Yersinia pestis virulence operon. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2012;68(Pt 1):2–7.

    Article  CAS  Google Scholar 

  83. Grabenstein JP, Marceau M, Pujol C, Simonet M, Bliska JB. The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun. 2004;72(9):4973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, et al. The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun. 2000;68(6):3419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pisano F, Heine W, Rosenheinrich M, Schweer J, Nuss AM, Dersch P. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS One. 2014;9(7):e103541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bozue J, Mou S, Moody KL, Cote CK, Trevino S, Fritz D, et al. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Microb Pathog. 2011;50(6):314–21.

    Article  CAS  PubMed  Google Scholar 

  87. Bartra SS, Gong X, Lorica CD, Jain C, Nair MK, Schifferli D, et al. The outer membrane protein A (OmpA) of Yersinia pestis promotes intracellular survival and virulence in mice. Microb Pathog. 2012;52(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  88. Klein KA, Fukuto HS, Pelletier M, Romanov G, Grabenstein JP, Palmer LE, et al. A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. J Bacteriol. 2012;194(3):653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maldonado-Arocho FJ, Green C, Fisher ML, Paczosa MK, Mecsas J. Adhesins and host serum factors drive Yop translocation by yersinia into professional phagocytes during animal infection. PLoS Pathog. 2013;9(6):e1003415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O. Plague bacteria target immune cells during infection. Science. 2005;309(5741):1739–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, et al. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med. 2002;196(8):1017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Black DS, Bliska JB. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 1997;16(10):2730–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Persson C, Carballeira N, Wolf-Watz H, Fallman M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 1997;16(9):2307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Black DS, Marie-Cardine A, Schraven B, Bliska JB. The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell Microbiol. 2000;2(5):401–14.

    Article  CAS  PubMed  Google Scholar 

  95. Yao T, Mecsas J, Healy JI, Falkow S, Chien Y. Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J Exp Med. 1999;190(9):1343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alonso A, Bottini N, Bruckner S, Rahmouni S, Williams S, Schoenberger SP, et al. Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH. J Biol Chem. 2004;279(6):4922–8.

    Article  CAS  PubMed  Google Scholar 

  97. Andersson K, Magnusson KE, Majeed M, Stendahl O, Fallman M. Yersinia pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effector YopH. Infect Immun. 1999;67(5):2567–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rolan HG, Durand EA, Mecsas J. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe. 2013;14(3):306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol. 2008;11(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  100. Trosky JE, Liverman AD, Orth K. Yersinia outer proteins: Yops. Cell Microbiol. 2008;10(3):557–65.

    Article  CAS  PubMed  Google Scholar 

  101. Navarro L, Koller A, Nordfelth R, Wolf-Watz H, Taylor S, Dixon JE. Identification of a molecular target for the Yersinia protein kinase A. Mol Cell. 2007;26(4):465–77.

    Article  CAS  PubMed  Google Scholar 

  102. Prehna G, Ivanov MI, Bliska JB, Stebbins CE. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell. 2006;126(5):869–80.

    Article  CAS  PubMed  Google Scholar 

  103. Trasak C, Zenner G, Vogel A, Yuksekdag G, Rost R, Haase I, et al. Yersinia protein kinase YopO is activated by a novel G-actin binding process. J Biol Chem. 2007;282(4):2268–77.

    Article  CAS  PubMed  Google Scholar 

  104. Dukuzumuremyi JM, Rosqvist R, Hallberg B, Akerstrom B, Wolf-Watz H, Schesser K. The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J Biol Chem. 2000;275(45):35281–90.

    Article  CAS  PubMed  Google Scholar 

  105. Juris SJ, Rudolph AE, Huddler D, Orth K, Dixon JE. A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc Natl Acad Sci U S A. 2000;97(17):9431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Letzelter M, Sorg I, Mota LJ, Meyer S, Stalder J, Feldman M, et al. The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J. 2006;25(13):3223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hakansson S, Galyov EE, Rosqvist R, Wolf-Watz H. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol Microbiol. 1996;20(3):593–603.

    Article  CAS  PubMed  Google Scholar 

  108. Bear JE, Gertler FB. Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci. 2009;122(Pt 12):1947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bierne H, Miki H, Innocenti M, Scita G, Gertler FB, Takenawa T, et al. WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. J Cell Sci. 2005;118(Pt 7):1537–47.

    Article  CAS  PubMed  Google Scholar 

  110. Auerbuch V, Loureiro JJ, Gertler FB, Theriot JA, Portnoy DA. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol. 2003;49(5):1361–75.

    Article  CAS  PubMed  Google Scholar 

  111. Park H, Teja K, O'Shea JJ, Siegel RM. The Yersinia effector protein YpkA induces apoptosis independently of actin depolymerization. J Immunol. 2007;178(10):6426–34.

    Article  CAS  PubMed  Google Scholar 

  112. Wiley DJ, Nordfeldth R, Rosenzweig J, DaFonseca CJ, Gustin R, Wolf-Watz H, et al. The Ser/Thr kinase activity of the Yersinia protein kinase A (YpkA) is necessary for full virulence in the mouse, mollifying phagocytes, and disrupting the eukaryotic cytoskeleton. Microb Pathog. 2006;40(5):234–43.

    Article  CAS  PubMed  Google Scholar 

  113. Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell. 2002;109(5):575–88.

    Article  CAS  PubMed  Google Scholar 

  114. Shao F, Vacratsis PO, Bao Z, Bowers KE, Fierke CA, Dixon JE. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc Natl Acad Sci U S A. 2003;100(3):904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J Mol Biol. 2001;312(4):807–21.

    Article  CAS  PubMed  Google Scholar 

  116. Skrzypek E, Cowan C, Straley SC. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol Microbiol. 1998;30(5):1051–65.

    Article  CAS  PubMed  Google Scholar 

  117. LaRock CN, Cookson BT. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe. 2012;12(6):799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kerschen EJ, Cohen DA, Kaplan AM, Straley SC. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect Immun. 2004;72(8):4589–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McPhee JB, Mena P, Zhang Y, Bliska JB. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun. 2012;80(7):2519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Viboud GI, Bliska JB. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol. 2005;59:69–89.

    Article  CAS  PubMed  Google Scholar 

  121. Straley SC, Cibull ML. Differential clearance and host-pathogen interactions of YopE- and YopK- YopL- Yersinia pestis in BALB/c mice. Infect Immun. 1989;57(4):1200–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Holmstrom A, Rosqvist R, Wolf-Watz H, Forsberg A. Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect Immun. 1995;63(6):2269–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Holmstrom A, Rosqvist R, Wolf-Watz H, Forsberg A. YopK, a novel virulence determinant of Yersinia pseudotuberculosis. Contrib Microbiol Immunol. 1995;13:239–43.

    CAS  PubMed  Google Scholar 

  124. Holmstrom A, Petterson J, Rosqvist R, Hakansson S, Tafazoli F, Fallman M, et al. YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Mol Microbiol. 1997;24(1):73–91.

    Article  CAS  PubMed  Google Scholar 

  125. Dewoody R, Merritt PM, Houppert AS, Marketon MM. YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol Microbiol. 2011;79(6):1445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dewoody R, Merritt PM, Marketon MM. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol. 2013;87(2):301–17.

    Article  CAS  PubMed  Google Scholar 

  127. Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe. 2010;7(5):376–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thorslund SE, Edgren T, Pettersson J, Nordfelth R, Sellin ME, Ivanova E, et al. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS One. 2011;6(2):e16784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Butler T. Plague into the 21st century. Clin Infect Dis. 2009;49(5):736–42.

    Article  PubMed  Google Scholar 

  130. Sing A, Reithmeier-Rost D, Granfors K, Hill J, Roggenkamp A, Heesemann J. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Proc Natl Acad Sci U S A. 2005;102(44):16049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Comer JE, Sturdevant DE, Carmody AB, Virtaneva K, Gardner D, Long D, et al. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun. 2010;78(12):5086–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bergsbaken T, Cookson BT. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation. J Leukoc Biol. 2009;86(5):1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guinet F, Ave P, Jones L, Huerre M, Carniel E. Defective innate cell response and lymph node infiltration specify Yersinia pestis infection. PLoS One. 2008;3(2):e1688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Rogers JV, Choi YW, Giannunzio LF, Sabourin PJ, Bornman DM, Blosser EG, et al. Transcriptional responses in spleens from mice exposed to Yersinia pestis CO92. Microb Pathog. 2007;43(2–3):67–77.

    Article  CAS  PubMed  Google Scholar 

  135. Galindo CL, Moen ST, Kozlova EV, Sha J, Garner HR, Agar SL, et al. Comparative analyses of transcriptional profiles in mouse organs using a pneumonic plague model after infection with wild-type Yersinia pestis CO92 and its Braun lipoprotein mutant. Comp Funct Genomics. 2009;2009:914762.

    Article  PubMed  CAS  Google Scholar 

  136. Liu H, Wang H, Qiu J, Wang X, Guo Z, Qiu Y, et al. Transcriptional profiling of a mice plague model: insights into interaction between Yersinia pestis and its host. J Basic Microbiol. 2009;49(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  137. Du Z, Yang H, Tan Y, Tian G, Zhang Q, Cui Y, et al. Transcriptomic response to Yersinia pestis: RIG-I like receptor signaling response is detrimental to the host against plague. J Genet Genomics Yi chuan xue bao. 2014;41(7):379–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Du, Z., Wang, X. (2016). Pathology and Pathogenesis of Yersinia pestis . In: Yang, R., Anisimov, A. (eds) Yersinia pestis: Retrospective and Perspective. Advances in Experimental Medicine and Biology, vol 918. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0890-4_7

Download citation

Publish with us

Policies and ethics