Advertisement

Plague Vaccines: Status and Future

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 918)

Abstract

Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.

Keywords

Yersinia pestis Plague Vaccines 

References

  1. 1.
    Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14(4):319–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Schrag SJ, Wiener P. Emerging infectious disease: what are the relative roles of ecology and evolution? Trends Ecol Evol. 1995;10(8):319–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Duplantier J-M, Duchemin J-B, Chanteau S, Carniel E. From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence. Vet Res. 2005;36(3):437–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L. Plague: past, present, and future. PLoS Med. 2008;5(1):e3.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Koerner JF, et al. Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA. 2000;283(17):2281–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Guiyoule A, Rasoamanana B, Buchrieser C, Michel P, Chanteau S, Carniel E. Recent emergence of new variants of Yersinia pestis in Madagascar. J Clin Microbiol. 1997;35(11):2826–33.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, Courvalin P, Carniel E. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis. 2001;7(1):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med. 1997;337(10):677–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Smiley ST. Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines. 2008;7(2):209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Feodorova VA, Corbel MJ. Prospects for new plague vaccines. Expert Rev Vaccines. 2009;8(12):1721–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Hawgood BJ. Waldemar Mordecai Haffkine, CIE (1860–1930): prophylactic vaccination against cholera and bubonic plague in British India. J Med Biogr. 2007;15(1):9–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Cavanaugh DC. K F Meyer’s work on plague. J Infect Dis. 1974;129(Suppl):S10–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer KF. Effectiveness of live or killed plague vaccines in man. Bull World Health Organ. 1970;42(5):653–66.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Cavanaugh DC, Elisberg BL, Llewellyn CH, Marshall Jr JD, Rust Jr JH, Williams JE, Meyer KF. Plague immunization. V. Indirect evidence for the efficacy of plague vaccine. J Infect Dis. 1974;129(Suppl):S37–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Butler T. Plague and other Yersinia infections. New York: Plenum Press; 1983.CrossRefGoogle Scholar
  17. 17.
    Smiley ST. Immune defense against pneumonic plague. Immunol Rev. 2008;225:256–71.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Titball RW, Williamson ED. Yersinia pestis (plague) vaccines. Expert Opin Biol Ther. 2004;4(6):965–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer KF, Cavanaugh DC, Bartelloni PJ, Marshall Jr JD. Plague immunization. I. Past and present trends. J Infect Dis. 1974;129(Suppl):S13–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Jones SM, Griffin KF, Hodgson I, Williamson ED. Protective efficacy of a fully recombinant plague vaccine in the guinea pig. Vaccine. 2003;21(25–26):3912–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Russell P, Eley SM, Hibbs SE, Manchee RJ, Stagg AJ, Titball RW. A comparison of Plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. Vaccine. 1995;13(16):1551–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Demeure C, editor. Live vaccines against plague and pseudotuberculosis. Wymondham: Caister Academic Press; 2012.Google Scholar
  23. 23.
    Williamson ED, Oyston PCF, editors. Acellular vaccines against plague. Wymondham: Caister Academic Press; 2012.Google Scholar
  24. 24.
    Dentovskaya SV, Kopylov PK, Ivanov SA, Ageev SA, Anisimov AP. Molecular bases of vaccine-prevention of plague. Mol Genet Microbiol. 2013;28(3):87–98.CrossRefGoogle Scholar
  25. 25.
    Pier GB, Meluleni G, Goldberg JB. Clearance of Pseudomonas aeruginosa from the murine gastrointestinal-tract is effectively mediated by O-antigen-specific circulating antibodies. Infect Immun. 1995;63(8):2818–25.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Roland K, Karaca K, Sizemore D. Expression of Escherichia coli antigens in Salmonella typhimurium as a vaccine to prevent airsacculitis in chickens. Avian Dis. 2004;48(3):595–605.PubMedCrossRefGoogle Scholar
  27. 27.
    de Xu Q, Cisar JO, Osorio M, Wai TT, Kopecko DJ. Core-linked LPS expression of Shigella dysenteriae serotype 1 O-antigen in live Salmonella Typhi vaccine vector Ty21a: preclinical evidence of immunogenicity and protection. Vaccine. 2007;25(33):6167–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Conlan JW, Shen H, Webb A, Perry MB. Mice vaccinated with the O-antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine. 2002;20(29–30):3465–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Fulop M, Manchee R, Titball R. Role of lipopolysaccharide and a major outer membrane protein from Francisella tularensis in the induction of immunity against tularemia. Vaccine. 1995;13(13):1220–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Fulop M, Mastroeni P, Green M, Titball RW. Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine. 2001;19(31):4465–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Sandstrom G, Tarnvik A, Wolf-Watz H, Lofgren S. Antigen from Francisella tularensis: nonidentity between determinants participating in cell-mediated and humoral reactions. Infect Immun. 1984;45(1):101–6.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Thomas RM, Titball RW, Oyston PC, Griffin K, Waters E, Hitchen PG, Michell SL, Grice ID, Wilson JC, Prior JL. The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun. 2007;75(1):371–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Prior JL, Hitchen PG, Williamson ED, Reason AJ, Morris HR, Dell A, Wren BW, Titball RW. Characterization of the lipopolysaccharide of Yersinia pestis. Microb Pathog. 2001;30(2):49–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Ben-Efraim S, Aronson M, Bichowsky-Slomnicki L. New antigen component of Pasteurella pestis formed under specified conditions of pH and temperature. J Bacteriol. 1961;81(5):704–14.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL. RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A. 2006;103(36):13514–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chauvaux S, Rosso ML, Frangeul L, Lacroix C, Labarre L, Schiavo A, Marceau M, Dillies MA, Foulon J, Coppee JY, et al. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Microbiology. 2007;153(Pt 9):3112–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu H, Wang H, Qiu J, Wang X, Guo Z, Qiu Y, Zhou D, Han Y, Du Z, Li C, et al. Transcriptional profiling of a mice plague model: insights into interaction between Yersinia pestis and its host. J Basic Microbiol. 2009;49(1):92–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Lindler LE, Klempner MS, Straley SC. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun. 1990;58(8):2569–77.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Anisimov AP, Bakhteeva IV, Panfertsev EA, Svetoch TE, Kravchenko TB, Platonov ME, Titareva GM, Kombarova TI, Ivanov SA, Rakin AV, et al. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice. J Med Microbiol. 2009;58(Pt 1):26–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Li B, Jiang L, Song Q, Yang J, Chen Z, Guo Z, Zhou D, Du Z, Song Y, Wang J, et al. Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infect Immun. 2005;73(6):3734–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Li B, Zhou L, Guo J, Wang X, Ni B, Ke Y, Zhu Z, Guo Z, Yang R. High-throughput identification of new protective antigens from a Yersinia pestis live vaccine by enzyme-linked immunospot assay. Infect Immun. 2009;77(10):4356–61.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Galvan EM, Nair MK, Chen H, Del Piero F, Schifferli DM. Biosafety level 2 model of pneumonic plague and protection studies with F1 and Psa. Infect Immun. 2010;78(8):3443–53.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM. Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice. Infect Immun. 1999;67(4):1922–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Andrews GP, Strachan ST, Benner GE, Sample AK, Anderson Jr GW, Adamovicz JJ, Welkos SL, Pullen JK, Friedlander AM. Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and nonencapsulated Yersinia pestis. Infect Immun. 1999;67(3):1533–7.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Roggenkamp A, Ackermann N, Jacobi CA, Truelzsch K, Hoffmann H, Heesemann J. Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J Bacteriol. 2003;185(13):3735–44.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ackermann N, Tiller M, Anding G, Roggenkamp A, Heesemann J. Contribution of trimeric autotransporter C-terminal domains of oligomeric coiled-coil adhesin (Oca) family members YadA, UspA1, EibA, and Hia to translocation of the YadA passenger domain and virulence of Yersinia enterocolitica. J Bacteriol. 2008;190(14):5031–43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Forman S, Wulff CR, Myers-Morales T, Cowan C, Perry RD, Straley SC. yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun. 2008;76(2):578–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Partial Retraction. yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun. 2013;81(2):619.CrossRefGoogle Scholar
  49. 49.
    Murphy BS, Wulff CR, Garvy BA, Straley SC. Yersinia pestis YadC: a novel vaccine candidate against plague. Adv Exp Med Biol. 2007;603:400–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Sun W, Olinzock J, Wang S, Sanapala S, Curtiss 3rd R. Evaluation of YadC protein delivered by live attenuated Salmonella as a vaccine against plague. Pathog Dis. 2014;70(2):119–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Allaoui A, Schulte R, Cornelis GR. Mutational analysis of the Yersinia-Enterocolitica Virc Operon – characterization of Ysce, Yscf, Yscg, Ysci, Yscj, Ysck required for Yop secretion and Ysch Encoding Yopr. Mol Microbiol. 1995;18(2):343–55.PubMedCrossRefGoogle Scholar
  52. 52.
    Haddix PL, Straley SC. Structure and regulation of the Yersinia pestis yscBCDEF operon. J Bacteriol. 1992;174(14):4820–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hoiczyk E, Blobel G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci U S A. 2001;98(8):4669–74.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Marenne MN, Journet L, Mota LJ, Cornelis GR. Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV. YscF and YopN. Microb Pathog. 2003;35(6):243–58.PubMedCrossRefGoogle Scholar
  55. 55.
    Matson JS, Durick KA, Bradley DS, Nilles ML. Immunization of mice with YscF provides protection from Yersinia pestis infections. BMC Microbiol. 2005;5:38.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Erova TE, Rosenzweig JA, Sha J, Suarez G, Sierra JC, Kirtley ML, van Lier CJ, Telepnev MV, Motin VL, Chopra AK. Evaluation of protective potential of yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine. Clin Vaccine Immunol. 2013;20(2):227–38.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sha J, Endsley JJ, Kirtley ML, Foltz SM, Huante MB, Erova TE, Kozlova EV, Popov VL, Yeager LA, Zudina IV, et al. Characterization of an F1 deletion mutant of yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol. 2011;49(5):1708–15.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rodrigues CG, Carneiro CM, Barbosa CT, Nogueira RA. Antigen F1 from Yersinia pestis forms aqueous channels in lipid bilayer membranes. Braz J Med Biol Res. 1992;25(1):75–9.PubMedGoogle Scholar
  59. 59.
    Galyov EE, Karlishev AV, Chernovskaya TV, Dolgikh DA, Smirnov O, Volkovoy KI, Abramov VM, Zav’yalov VP. Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone protein PapD of Escherichia coli. FEBS Lett. 1991;286(1–2):79–82.PubMedCrossRefGoogle Scholar
  60. 60.
    Karlyshev AV, Galyov EE, Smirnov O, Guzayev AP, Abramov VM, Zav’yalov VP. A new gene of the f1 operon of Y. pestis involved in the capsule biogenesis. FEBS Lett. 1992;297(1–2):77–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Meyer KF, Hightower JA, McCrumb FR. Plague immunization. VI. Vaccination with the fraction I antigen of Yersinia pestis. J Infect Dis. 1974;129(Suppl):S41–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Simpson WJ, Thomas RE, Schwan TG. Recombinant capsular antigen (fraction 1) from Yersinia pestis induces a protective antibody response in BALB/c mice. AmJTrop Med Hyg. 1990;43(4):389–96.Google Scholar
  63. 63.
    Andrews GP, Heath DG, Anderson Jr GW, Welkos SL, Friedlander AM. Fraction 1 capsular antigen (F1) purification from Yersinia pestis CO92 and from an Escherichia coli recombinant strain and efficacy against lethal plague challenge. Infect Immun. 1996;64(6):2180–7.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Reddin KM, Easterbrook TJ, Eley SM, Russell P, Mobsby VA, Jones DH, Farrar GH, Williamson ED, Robinson A. Comparison of the immunological and protective responses elicited by microencapsulated formulations of the F1 antigen from Yersinia pestis. Vaccine. 1998;16(8):761–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Meka-Mechenko TV. F1-negative natural Y. pestis strains. Adv Exp Med Biol. 2003;529:379–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Davis KJ, Fritz DL, Pitt ML, Welkos SL, Worsham PL, Friedlander AM. Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative Yersinia pestis in African green monkeys (Cercopithecus aethiops). Arch Pathol Lab Med. 1996;120(2):156–63.PubMedGoogle Scholar
  67. 67.
    Quenee LE, Cornelius CA, Ciletti NA, Elli D, Schneewind O. Yersinia pestis caf1 variants and the limits of plague vaccine protection. Infect Immun. 2008;76(5):2025–36.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cornelius CA, Quenee LE, Overheim KA, Koster F, Brasel TL, Elli D, Ciletti NA, Schneewind O. Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague. Infect Immun. 2008;76(12):5588–97.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Quenee LE, Ciletti N, Berube B, Krausz T, Elli D, Hermanas T, Schneewind O. Plague in Guinea pigs and its prevention by subunit vaccines. Am J Pathol. 2011;178(4):1689–700.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, Sory MP, Stainier I. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev. 1998;62(4):1315–52.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Cornelis GR. Yersinia type III secretion: send in the effectors. J Cell Biol. 2002;158(3):401–8.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Perry RD, Straley SC, Fetherston JD, Rose DJ, Gregor J, Blattner FR. DNA sequencing and analysis of the low-Ca2+ -response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun. 1998;66(10):4611–23.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Brubaker RR. Interleukin-10 and inhibition of innate immunity to Yersiniae: roles of Yops and LcrV (V antigen). Infect Immun. 2003;71(7):3673–81.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cornelis GR. The type III secretion injectisome. Nat Rev Microbiol. 2006;4(11):811–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Mueller CA, Broz P, Cornelis GR. The type III secretion system tip complex and translocon. Mol Microbiol. 2008;68(5):1085–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Ivanov MI, Hill J, Bliska JB. Direct neutralization of type III effector translocation by the variable region of a monoclonal antibody to Yersinia pestis LcrV. Clin Vaccine Immunol. 2014;21(5):667–73.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Skrzypek EaS SC. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol. 1993;175:3520–8.Google Scholar
  78. 78.
    Sarker MR, Neyt C, Stainier I, Cornelis GR. The Yersinia Yop virulon: LcrV is required for extrusion of the translocators YopB and YopD. J Bacteriol. 1998;180(5):1207–14.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Oyston PC, Williamson ED. Prophylaxis and therapy of plague. Expert Rev Anti-Infe. 2013;11(8):817–29.CrossRefGoogle Scholar
  80. 80.
    Anderson Jr GW, Leary SE, Williamson ED, Titball RW, Welkos SL, Worsham PL, Friedlander AM. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis. Infect Immun. 1996;64(11):4580–5.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Leary SE, Williamson ED, Griffin KF, Russell P, Eley SM, Titball RW. Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague. Infect Immun. 1995;63(8):2854–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Motin VL, Nakajima R, Smirnov GB, Brubaker RR. Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect Immun. 1994;62(10):4192–201.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Une T, Brubaker RR. Roles of V antigen in promoting virulence and immunity in yersiniae. J Immunol. 1984;133(4):2226–30.PubMedGoogle Scholar
  84. 84.
    Quenee LE, Schneewind O. Plague vaccines and the molecular basis of immunity against Yersinia pestis. Hum Vaccin. 2009;5(12):817–23.PubMedCrossRefGoogle Scholar
  85. 85.
    Williamson ED, Eley SM, Stagg AJ, Green M, Russell P, Titball RW. A single dose sub-unit vaccine protects against pneumonic plague. Vaccine. 2000;19(4–5):566–71.PubMedCrossRefGoogle Scholar
  86. 86.
    Williamson ED, Eley SM, Griffin KF, Green M, Russell P, Leary SE, Oyston PC, Easterbrook T, Reddin KM, Robinson A, et al. A new improved sub-unit vaccine for plague: the basis of protection. FEMS Immunol Med Microbiol. 1995;12(3–4):223–30.PubMedCrossRefGoogle Scholar
  87. 87.
    Williamson ED, Vesey PM, Gillhespy KJ, Eley SM, Green M, Titball RW. An IgG1 titre to the F1 and V antigens correlates with protection against plague in the mouse model. Clin Exp Immunol. 1999;116(1):107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Williamson ED, Flick-Smith HC, Waters E, Miller J, Hodgson I, Le Butt CS, Hill J. Immunogenicity of the rF1 + rV vaccine for plague with identification of potential immune correlates. Microb Pathog. 2007;42(1):11–21.PubMedCrossRefGoogle Scholar
  89. 89.
    Williamson ED, Flick-Smith HC, Lebutt C, Rowland CA, Jones SM, Waters EL, Gwyther RJ, Miller J, Packer PJ, Irving M. Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infect Immun. 2005;73(6):3598–608.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Powell BS, Andrews GP, Enama JT, Jendrek S, Bolt C, Worsham P, Pullen JK, Ribot W, Hines H, Smith L, et al. Design and testing for a nontagged F1-V fusion protein as vaccine antigen against bubonic and pneumonic plague. Biotechnol Prog. 2005;21(5):1490–510.PubMedCrossRefGoogle Scholar
  91. 91.
    Heath DG, Anderson Jr GW, Mauro JM, Welkos SL, Andrews GP, Adamovicz J, Friedlander AM. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine. 1998;16(11–12):1131–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Sing A, Roggenkamp A, Geiger AM, Heesemann J. Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J Immunol. 2002;168(3):1315–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, Aepfelbacher M, Heesemann J. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med. 2002;196(8):1017–24.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Reithmeier-Rost D, Bierschenk S, Filippova N, Schroder-Braunstein J, Sing A. Yersinia V antigen induces both TLR homo- and heterotolerance in an IL-10-involving manner. Cell Immunol. 2004;231(1–2):63–74.PubMedCrossRefGoogle Scholar
  95. 95.
    Nedialkov YA, Motin VL, Brubaker RR. Resistance to lipopolysaccharide mediated by the Yersinia pestis V antigen-polyhistidine fusion peptide: amplification of interleukin-10. Infect Immun. 1997;65(4):1196–203.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Pouliot K, Pan N, Wang S, Lu S, Lien E, Goguen JD. Evaluation of the role of LcrV-Toll-like receptor 2-mediated immunomodulation in the virulence of Yersinia pestis. Infect Immun. 2007;75(7):3571–80.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Reithmeier-Rost D, Hill J, Elvin SJ, Williamson D, Dittmann S, Schmid A, Wilharm G, Sing A. The weak interaction of LcrV and TLR2 does not contribute to the virulence of Yersinia pestis. Microbes Infect. 2007;9(8):997–1002.PubMedCrossRefGoogle Scholar
  98. 98.
    Sun W, Curtiss 3rd R. Amino acid substitutions in LcrV at putative sites of interaction with toll-like receptor 2 do not affect the virulence of Yersinia pestis. Microb Pathog. 2012;53(5–6):198–206.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    DeBord KL, Anderson DM, Marketon MM, Overheim KA, DePaolo RW, Ciletti NA, Jabri B, Schneewind O. Immunogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LcrV. Infect Immun. 2006;74(8):4910–4.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Overheim KA, Depaolo RW, Debord KL, Morrin EM, Anderson DM, Green NM, Brubaker RR, Jabri B, Schneewind O. LcrV plague vaccine with altered immunomodulatory properties. Infect Immun. 2005;73(8):5152–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Quenee LE, Ciletti NA, Elli D, Hermanas TM, Schneewind O. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. Vaccine. 2011;29(38):6572–83.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Qi Z, Zhou L, Zhang Q, Ren L, Dai R, Wu B, Wang T, Zhu Z, Yang Y, Cui B, et al. Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1 + rV270. Vaccine. 2010;28(6):1655–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Qiu Y, Liu Y, Qi Z, Wang W, Kou Z, Zhang Q, Liu G, Liu T, Yang Y, Yang X, et al. Comparison of immunological responses of plague vaccines F1 + rV270 and EV76 in Chinese-origin rhesus macaque, Macaca mulatta. Scand J Immunol. 2010;72(5):425–33.PubMedCrossRefGoogle Scholar
  104. 104.
    Tian G, Qiu Y, Qi Z, Wu X, Zhang Q, Bi Y, Yang Y, Li Y, Yang X, Xin Y, et al. Histopathological observation of immunized rhesus macaques with plague vaccines after subcutaneous infection of Yersinia pestis. Plos One. 2011;6(4):e19260.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Qi ZZ, Zhao HH, Zhang QW, Bi YJ, Ren LL, Zhang XC, Yang HQ, Yang XY, Wang Q, Li CX, et al. Acquisition of maternal antibodies both from the placenta and by lactation protects mouse offspring from Yersinia pestis challenge. Clin Vaccine Immunol. 2012;19(11):1746–50.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang Z, Zhou L, Qi Z, Zhang Q, Dai R, Yang Y, Cui B, Wang H, Yang R, Wang X. Long-term observation of subunit vaccine F1-rV270 against Yersinia pestis in mice. Clin Vaccine Immunol. 2010;17(1):199–201.PubMedCrossRefGoogle Scholar
  107. 107.
    Jackson S, Burrows TW. The virulence-enhancing effect of iron on non-pigmented mutants of virulent strains of Pasteurella pestis. Br J Exp Pathol. 1956;37:577–83.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Girard G. Immunity in plague. Acquisitions supplied by 30 years of work ont the “Pasteurella pestis EV” (Girard and Robic) strain. Biol Med (Paris). 1963;52:631–731.Google Scholar
  109. 109.
    Saltykova RA, Faibich MM. Experience from a 30-year study of the stability of the properties of the plague vaccine strain EV in the USSR. Zh Mikrobiol Epidemiol Immunobiol. 1975;6:3–8.PubMedGoogle Scholar
  110. 110.
    Meyer KF, Smith G, Foster L, Brookman M, Sung M. Live, attenuated Yersinia pestis vaccine: virulent in nonhuman primates, harmless to guinea pigs. J Infect Dis. 1974;129(Suppl):S85–120.PubMedCrossRefGoogle Scholar
  111. 111.
    Hallett AF, Isaacson M, Meyer KF. Pathogenicity and immunogenic efficacy of a live attenuated plaque vaccine in vervet monkeys. Infect Immun. 1973;8(6):876–81.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Une T, Brubaker RR. In vivo comparison of avirulent Vwa- and Pgm- or Pstr phenotypes of yersiniae. Infect Immun. 1984;43(3):895–900.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Liu S, Bayles DO, Mason TM, Wilkinson BJ. A cold-sensitive Listeria monocytogenes mutant has a transposon insertion in a gene encoding a putative membrane protein and shows altered (p)ppGpp levels. Appl Environ Microbiol. 2006;72(6):3955–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine. 2006;24(12):2027–34.PubMedCrossRefGoogle Scholar
  115. 115.
    Curtiss III R, Kelly SM. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect Immun. 1987;55(12):3035–43.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhan L, Han Y, Yang L, Geng J, Li Y, Gao H, Guo Z, Fan W, Li G, Zhang L, et al. The cyclic AMP receptor protein, CRP, is required for both virulence and expression of the minimal CRP regulon in Yersinia pestis biovar microtus. Infect Immun. 2008;76(11):5028–37.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sun W, Roland KL, Branger CG, Kuang X, Curtiss 3rd R. The role of relA and spoT in Yersinia pestis KIM5+ pathogenicity. Plos One. 2009;4(8):e6720.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sun W, Roland KL, Kuang X, Branger CG, Curtiss 3rd R. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague. Infect Immun. 2010;78(3):1304–13.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Curtiss III R, Wanda SY, Gunn BM, Zhang X, Tinge SA, Ananthnarayan V, Mo H, Wang S, Kong W. Salmonella enterica serovar Typhimurium strains with regulated delayed attenuation in vivo. Infect Immun. 2009;77(3):1071–82.PubMedCrossRefGoogle Scholar
  120. 120.
    Knirel YA, Anisimov AP. Lipopolysaccharide of Yersinia pestis, the cause of plague: structure, genetics. Biological properties. Acta Nat. 2012;4(3):46–58.Google Scholar
  121. 121.
    Rebeil R, Ernst RK, Jarrett CO, Adams KN, Miller SI, Hinnebusch BJ. Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol. 2006;188(4):1381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A. 2000;97(5):2163–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162(7):3749–52.PubMedGoogle Scholar
  124. 124.
    Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest. 2000;105(4):497–504.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006;7(10):1066–73.PubMedCrossRefGoogle Scholar
  127. 127.
    Sun W, Six DA, Reynolds CM, Chung HS, Raetz CR, Curtiss 3rd R. Pathogenicity of Yersinia pestis synthesis of 1-dephosphorylated lipid A. Infect Immun. 2013;81(4):1172–85.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sun W, Six D, Kuang XY, Roland KL, Raetz CRH, Curtiss 3rd R. A live attenuated strain of Yersinia pestis KIM as a vaccine against plague. Vaccine. 2011;29:2986–98.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bubeck SS, Dube PH. Yersinia pestis CO92 delta yopH is a potent live, attenuated plague vaccine. Clin Vaccine Immunol. 2007;14(9):1235–8.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Flashner Y, Mamroud E, Tidhar A, Ber R, Aftalion M, Gur D, Lazar S, Zvi A, Bino T, Ariel N, et al. Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun. 2004;72(2):908–15.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, et al. The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. Plos One. 2009;4(9):e7023.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Dentovskaya SV, Ivanov SA, Kopylov P, Shaikhutdinova RZ, Platonov ME, Kombarova TI, Gapel’chenkova TV, Balakhonov SV, Anisimov AP. Selective protective potency of Yersinia pestis DeltanlpD mutants. Acta Nat. 2015;7(1):102–8.Google Scholar
  133. 133.
    Bozue J, Cote CK, Webster W, Bassett A, Tobery S, Little S, Swietnicki W. A Yersinia pestis YscN ATPase mutant functions as a live attenuated vaccine against bubonic plague in mice. Fems Microbiol Lett. 2012;332(2):113–21.PubMedCrossRefGoogle Scholar
  134. 134.
    Sha J, Kirtley ML, van Lier CJ, Wang S, Erova TE, Kozlova EV, Cao A, Cong Y, Fitts EC, Rosenzweig JA, et al. Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect Immun. 2013;81(3):815–28.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Zhang X, Qi Z, Du Z, Bi Y, Zhang Q, Tan Y, Yang H, Xin Y, Yang R, Wang X. A live attenuated strain of Yersinia pestis DeltayscB provides protection against bubonic and pneumonic plagues in mouse model. Vaccine. 2013;31(22):2539–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang Q, Wang Q, Tian G, Qi Z, Zhang X, Wu X, Qiu Y, Bi Y, Yang X, Xin Y, et al. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques. Hum Vaccin Immunother. 2014;10(2):368–77.PubMedCrossRefGoogle Scholar
  137. 137.
    Ponnusamy D, Fitts EC, Sha J, Erova TE, Kozlova EV, Kirtley ML, Tiner BL, Andersson JA, Chopra AK. High-throughput signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun. 2015;83(5):2065–81.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Tiner BL, Sha J, Kirtley ML, Erova TE, Popov VL, Baze WB, van Lier CJ, Ponnusamy D, Andersson JA, Motin VL, et al. Combinational deletion of three membrane protein-encoding genes highly attenuates Yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun. 2015;83(4):1318–38.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999;96(24):14043–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 2004;101(38):13826–31.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Taylor VL, Titball RW, Oyston PC. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology. 2005;151(Pt 6):1919–26.PubMedCrossRefGoogle Scholar
  142. 142.
    Blisnick T, Ave P, Huerre M, Carniel E, Demeure CE. Oral vaccination against bubonic plague using a live avirulent Yersinia pseudotuberculosis strain. Infect Immun. 2008;76(8):3808–16.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Okan NA, Mena P, Benach JL, Bliska JB, Karzai AW. The smpB-ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague infection. Infect Immun. 2010;78(3):1284–93.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Derbise A, Cerda Marin A, Ave P, Blisnick T, Huerre M, Carniel E, Demeure CE. An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague. Plos Neglect Trop D. 2012;6(2):e1528.CrossRefGoogle Scholar
  145. 145.
    Sun W, Sanapala S, Henderson JC, Sam S, Olinzock J, Trent MS, Curtiss 3rd R. LcrV delivered via type III secretion system of live attenuated Yersinia pseudotuberculosis enhances immunogenicity against pneumonic plague. Infect Immun. 2014;82(10):4390–404.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ. Evolutionary dynamics of viral attenuation. J Virol. 2002;76(20):10524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Behr MA. BCG–different strains, different vaccines? Lancet Infect Dis. 2002;2(2):86–92.PubMedCrossRefGoogle Scholar
  148. 148.
    Male D, Brostoff J, Roth D and Roitt V. Immunology, 7th ed. Philadelphia: Elsevier; 2006.Google Scholar
  149. 149.
  150. 150.
    Modlin JF. Poliomyelitis in the United States: the final chapter? JAMA. 2004;292(14):1749–51.PubMedCrossRefGoogle Scholar
  151. 151.
    Levine MM. Immunization against bacterial diseases of the intestine. J Pediatr Gastroenterol Nutr. 2000;31(4):336–55.PubMedCrossRefGoogle Scholar
  152. 152.
    Kapikian AZ, Hoshino Y, Chanock RM, Perez-Schael I. Efficacy of a quadrivalent rhesus rotavirus-based human rotavirus vaccine aimed at preventing severe rotavirus diarrhea in infants and young children. J Infect Dis. 1996;174 Suppl 1:S65–72.PubMedCrossRefGoogle Scholar
  153. 153.
    Germanier R, Fuer E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Diseas. 1975;131(5):553–8.CrossRefGoogle Scholar
  154. 154.
    Minne A, Jaworska J, Gerhold K, Ahrens B, Avagyan A, Vanbever R, Matricardi PM, Schmidt AC, Hamelmann E. Intranasal delivery of whole influenza vaccine prevents subsequent allergen-induced sensitization and airway hyper-reactivity in mice. Clin Exp Allergy. 2007;37(8):1250–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Lin K. Intranasal influenza vaccine may be a safe, effective option for many children. J Pediatr. 2007;151(1):102–3.PubMedCrossRefGoogle Scholar
  156. 156.
    Vinella D, Albrecht C, Cashel M, D’Ari R. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol. 2005;56(4):958–70.PubMedCrossRefGoogle Scholar
  157. 157.
    Medina E, Guzman CA. Modulation of immune responses following antigen administration by mucosal route. FEMS Immunol Med Microbiol. 2000;27(4):305–11.PubMedCrossRefGoogle Scholar
  158. 158.
    Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58.PubMedCrossRefGoogle Scholar
  159. 159.
    Garmory HS, Leary SE, Griffin KF, Williamson ED, Brown KA, Titball RW. The use of live attenuated bacteria as a delivery system for heterologous antigens. J Drug Target. 2003;11(8–10):471–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Atkins HS, Morton M, Griffin KF, Stokes MG, Nataro JP, Titball RW. Recombinant Salmonella vaccines for biodefence. Vaccine. 2006;24(15):2710–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Ramirez K, Ditamo Y, Rodriguez L, Picking WL, van Roosmalen ML, Leenhouts K, Pasetti MF. Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection. Mucosal Immunol. 2010;3(2):159–71.PubMedCrossRefGoogle Scholar
  162. 162.
    Foligne B, Dessein R, Marceau M, Poiret S, Chamaillard M, Pot B, Simonet M, Daniel C. Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology. 2007;133(3):862–74.PubMedCrossRefGoogle Scholar
  163. 163.
    Carter PB, Collins FM. The route of enteric infection in normal mice. J Exp Med. 1974;139(5):1189–203.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Giannasca PJ, Neutra MR. Interactions of microorganisms with intestinal M cells: mucosal invasion and induction of secretory immunity. Infect Agents Dis. 1993;2(4):242–8.PubMedGoogle Scholar
  165. 165.
    Nix RN, Altschuler SE, Henson PM, Detweiler CS. Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathog. 2007;3(12):e193.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Leary SE, Griffin KF, Garmory HS, Williamson ED, Titball RW. Expression of an F1/V fusion protein in attenuated Salmonella typhimurium and protection of mice against plague. Microb Pathog. 1997;23(3):167–79.PubMedCrossRefGoogle Scholar
  167. 167.
    Garmory HS, Griffin KF, Brown KA, Titball RW. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague. Vaccine. 2003;21(21–22):3051–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Sizemore DR, Warner EA, Lawrence JA, Thomas LJ, Roland KL, Killeen KP. Construction and screening of attenuated DeltaphoP/Q Salmonella typhimurium vectored plague vaccine candidates. Human Vaccin Immunother. 2012;8(3):371–83.CrossRefGoogle Scholar
  169. 169.
    Titball RW, Howells AM, Oyston PC, Williamson ED. Expression of the Yersinia pestis capsular antigen (F1 antigen) on the surface of an aroA mutant of Salmonella typhimurium induces high levels of protection against plague. Infect Immun. 1997;65(5):1926–30.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Branger CG, Fetherston JD, Perry RD, Curtiss III R. Oral vaccination with different antigens from Yersinia pestis KIM delivered by live attenuated Salmonella typhimurium elicits a protective immune response against plague. Adv Exp Med Biol. 2007;603:387–99.PubMedCrossRefGoogle Scholar
  171. 171.
    Branger CG, Sun W, Torres-Escobar A, Perry R, Roland KL, Fetherston J, Curtiss 3rd R. Evaluation of Psn, HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge. Vaccine. 2010;29(2):274–82.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Morton M, Garmory HS, Perkins SD, O’Dowd AM, Griffin KF, Turner AK, Bennett AM, Titball RW. A Salmonella enterica serovar Typhi vaccine expressing Yersinia pestis F1 antigen on its surface provides protection against plague in mice. Vaccine. 2004;22(20):2524–32.PubMedCrossRefGoogle Scholar
  173. 173.
    Ramirez K, Capozzo AV, Lloyd SA, Sztein MB, Nataro JP, Pasetti MF. Mucosally delivered Salmonella typhi expressing the Yersinia pestis F1 antigen elicits mucosal and systemic immunity early in life and primes the neonatal immune system for a vigorous anamnestic response to parenteral F1 boost. J Immunol. 2009;182(2):1211–22.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Galen JE, Wang JY, Carrasco JA, Lloyd SA, Mellado-Sanchez G, Diaz-McNair J, Franco O, Buskirk AD, Nataro JP, Pasetti MF. A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection. Infect Immun. 2015;83(1):161–72.PubMedCrossRefGoogle Scholar
  175. 175.
    Williams JE, Cavanaugh DC. Chronic infections in laboratory rodents from inoculation of nonencapsulated plague bacilli (Yersinia pestis). Experientia. 1983;39(4):408–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Williams JE, Cavanaugh DC. Potential for rat plague from nonencapsulated variants of the plague bacillus (Yersinia pestis). Experientia. 1984;40(7):739–40.PubMedCrossRefGoogle Scholar
  177. 177.
    Weening EH, Cathelyn JS, Kaufman G, Lawrenz MB, Price P, Goldman WE, Miller VL. The dependence of the Yersinia pestis capsule on pathogenesis is influenced by the mouse background. Infect Immun. 2011;79(2):644–52.PubMedCrossRefGoogle Scholar
  178. 178.
    Winter CC, Cherry WB, Moody MD. An unusual strain of Pasteurella pestis isolated from a fatal human case of plague. Bull World Health Organ. 1960;23:408–9.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Anisimov AP, Dentovskaya SV, Panfertsev EA, Svetoch TE, Kopylov PK, Segelke BW, Zemla A, Telepnev MV, Motin VL. Amino acid and structural variability of Yersinia pestis LcrV protein. Infect Genet Evol. 2009;10(1):137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Revazishvili T, Rajanna C, Bakanidze L, Tsertsvadze N, Imnadze P, O’Connell K, Kreger A, Stine OC, Morris Jr JG, Sulakvelidze A. Characterisation of Yersinia pestis isolates from natural foci of plague in the Republic of Georgia, and their relationship to Y. pestis isolates from other countries. Clin Microbiol Infect. 2008;14(5):429–36.PubMedCrossRefGoogle Scholar
  181. 181.
    Torres-Escobar A, Juarez-Rodriguez MD, Branger CG, Curtiss 3rd R. Evaluation of the humoral immune response in mice orally vaccinated with live recombinant attenuated Salmonella enterica delivering a secreted form of Yersinia pestis PsaA. Vaccine. 2010;28(36):5810–6.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Fetherston JD, Lillard Jr JW, Perry RD. Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol. 1995;177(7):1824–33.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Hornung JM, Jones HA, Perry RD. The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem–protein complexes as iron sources. Mol Microbiol. 1996;20(4):725–39.PubMedCrossRefGoogle Scholar
  184. 184.
    Yang Y, Merriam JJ, Mueller JP, Isberg RR. The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun. 1996;64(7):2483–9.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Huang XZ, Lindler LE. The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun. 2004;72(12):7212–9.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med. 1996;334(18):1185–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Chiuchiolo MJ, Boyer JL, Krause A, Senina S, Hackett NR, Crystal RG. Protective immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenovirus-based vaccine vector expressing V antigen. J Infect Dis. 2006;194(9):1249–57.PubMedCrossRefGoogle Scholar
  188. 188.
    Boyer JL, Sofer-Podesta C, Ang J, Hackett NR, Chiuchiolo MJ, Senina S, Perlin D, Crystal RG. Protective immunity against a lethal respiratory Yersinia pestis challenge induced by V antigen or the F1 capsular antigen incorporated into adenovirus capsid. Hum Gene Ther. 2010;21(7):891–901.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Sofer-Podesta C, Ang J, Hackett NR, Senina S, Perlin D, Crystal RG, Boyer JL. Adenovirus-mediated delivery of an anti-V antigen monoclonal antibody protects mice against a lethal Yersinia pestis challenge. Infect Immun. 2009;77(4):1561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Van Blarcom TJ, Sofer-Podesta C, Ang J, Boyer JL, Crystal RG, Georgiou G. Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge. Gene Ther. 2010;17(7):913–21.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Palin A, Chattopadhyay A, Park S, Delmas G, Suresh R, Senina S, Perlin DS, Rose JK. An optimized vaccine vector based on recombinant vesicular stomatitis virus gives high-level, long-term protection against Yersinia pestis challenge. Vaccine. 2007;25(4):741–50.PubMedCrossRefGoogle Scholar
  192. 192.
    Chattopadhyay A, Park S, Delmas G, Suresh R, Senina S, Perlin DS, Rose JK. Single-dose, virus-vectored vaccine protection against Yersinia pestis challenge: CD4+ cells are required at the time of challenge for optimal protection. Vaccine. 2008;26(50):6329–37.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Embry A, Meng X, Cantwell A, Dube PH, Xiang Y. Enhancement of immune response to an antigen delivered by vaccinia virus by displaying the antigen on the surface of intracellular mature virion. Vaccine. 2011;29(33):5331–9.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Brewoo JN, Powell TD, Stinchcomb DT, Osorio JE. Efficacy and safety of a modified vaccinia Ankara (MVA) vectored plague vaccine in mice. Vaccine. 2010;28:5891–9.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Bhattacharya D, Mecsas J, Hu LT. Development of a vaccinia virus based reservoir-targeted vaccine against Yersinia pestis. Vaccine. 2010;28(48):7683–9.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447(7142):326–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Osorio JE, Powell TD, Frank RS, Moss K, Haanes EJ, Smith SR, Rocke TE, Stinchcomb DT. Recombinant raccoon pox vaccine protects mice against lethal plague. Vaccine. 2003;21(11–12):1232–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Mencher JS, Smith SR, Powell TD, Stinchcomb DT, Osorio JE, Rocke TE. Protection of black-tailed prairie dogs (Cynomys ludovicianus) against plague after voluntary consumption of baits containing recombinant raccoon poxvirus vaccine. Infect Immun. 2004;72(9):5502–5.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Rocke TE, Smith SR, Stinchcomb DT, Osorio JE. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits. J Wildl Dis. 2008;44(4):930–7.PubMedCrossRefGoogle Scholar
  200. 200.
    Reyes-Sandoval A, Ertl HC. DNA vaccines. Curr Mol Med. 2001;1(2):217–43.PubMedCrossRefGoogle Scholar
  201. 201.
    Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol. 2000;18:927–74.PubMedCrossRefGoogle Scholar
  202. 202.
    Bennett AM, Phillpotts RJ, Perkins SD, Jacobs SC, Williamson ED. Gene gun mediated vaccination is superior to manual delivery for immunisation with DNA vaccines expressing protective antigens from Yersinia pestis or Venezuelan Equine Encephalitis virus. Vaccine. 1999;18(7–8):588–96.PubMedCrossRefGoogle Scholar
  203. 203.
    Grosfeld H, Cohen S, Bino T, Flashner Y, Ber R, Mamroud E, Kronman C, Shafferman A, Velan B. Effective protective immunity to Yersinia pestis infection conferred by DNA vaccine coding for derivatives of the F1 capsular antigen. Infect Immun. 2003;71(1):374–83.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Garmory HS, Freeman D, Brown KA, Titball RW. Protection against plague afforded by immunisation with DNA vaccines optimised for expression of the Yersinia pestis V antigen. Vaccine. 2004;22(8):947–57.PubMedCrossRefGoogle Scholar
  205. 205.
    Williamson ED, Bennett AM, Perkins SD, Beedham RJ, Miller J, Baillie LW. Co-immunisation with a plasmid DNA cocktail primes mice against anthrax and plague. Vaccine. 2002;20(23–24):2933–41.PubMedCrossRefGoogle Scholar
  206. 206.
    Albrecht MT, Eyles JE, Baillie LW, Keane-Myers AM. Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model. Fems Immunol Med Microbiol. 2012;65(3):505–9.PubMedCrossRefGoogle Scholar
  207. 207.
    Wang S, Heilman D, Liu F, Giehl T, Joshi S, Huang X, Chou TH, Goguen J, Lu S. A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague. Vaccine. 2004;22(25–26):3348–57.PubMedCrossRefGoogle Scholar
  208. 208.
    Wang S, Goguen JD, Li F, Lu S. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge. Vaccine. 2011;29(39):6802–9.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Yamanaka H, Hoyt T, Yang X, Golden S, Bosio CM, Crist K, Becker T, Maddaloni M, Pascual DW. A nasal interleukin-12 DNA vaccine coexpressing Yersinia pestis F1-V fusion protein confers protection against pneumonic plague. Infect Immun. 2008;76(10):4564–73.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, Presky DH. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521.PubMedCrossRefGoogle Scholar
  211. 211.
    Yamanaka H, Hoyt T, Bowen R, Yang X, Crist K, Golden S, Maddaloni M, Pascual DW. An IL-12 DNA vaccine co-expressing Yersinia pestis antigens protects against pneumonic plague. Vaccine. 2009;27(1):80–7.PubMedCrossRefGoogle Scholar
  212. 212.
    Nasir A. Nanotechnology in vaccine development: a step forward. J Invest Dermatol. 2009;129(5):1055–9.PubMedCrossRefGoogle Scholar
  213. 213.
    Plebanski M, Xiang SD. Nanotechnology and vaccine development: methods to study and manipulate the interaction of nanoparticles with the immune system. Methods. 2013;60(3):225.PubMedCrossRefGoogle Scholar
  214. 214.
    Zeng G, Chen J, Zhong L, Wang R, Jiang L, Cai J, Yan L, Huang D, Chen CY, Chen ZW. NSOM- and AFM-based nanotechnology elucidates nano-structural and atomic-force features of a Y. pestis V immunogen-containing particle vaccine capable of eliciting robust response. Proteomics. 2009;9(6):1538–47.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Blanchette CD, Fischer NO, Corzett M, Bench G, Hoeprich PD. Kinetic analysis of his-tagged protein binding to nickel-chelating nanolipoprotein particles. Bioconjug Chem. 2010;21(7):1321–30.PubMedCrossRefGoogle Scholar
  216. 216.
    Fischer NO, Rasley A, Corzett M, Hwang MH, Hoeprich PD, Blanchette CD. Colocalized delivery of adjuvant and antigen using nanolipoprotein particles enhances the immune response to recombinant antigens. J Am Chem Soc. 2013;135(6):2044–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. Plos One. 2011;6(3):e17642.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Ulery BD, Petersen LK, Phanse Y, Kong CS, Broderick SR, Kumar D, Ramer-Tait AE, Carrillo-Conde B, Rajan K, Wannemuehler MJ, et al. Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants. Sci Rep. 2011;1:198.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Ross KA, Haughney SL, Petersen LK, Boggiatto P, Wannemuehler MJ, Narasimhan B. Lung deposition and cellular uptake behavior of pathogen-mimicking nanovaccines in the first 48 hours. Adv Healthcare Mater. 2014;3(7):1071–7.CrossRefGoogle Scholar
  220. 220.
    Haughney SL, Ross KA, Boggiatto PM, Wannemuehler MJ, Narasimhan B. Effect of nanovaccine chemistry on humoral immune response kinetics and maturation. Nanoscale. 2014;6(22):13770–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Gregory AE, Williamson ED, Prior JL, Butcher WA, Thompson IJ, Shaw AM, Titball RW. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine. 2012;30(48):6777–82.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Tao P, Mahalingam M, Marasa BS, Zhang ZH, Chopra AK, Rao VB. In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci U S A. 2013;110(15):5846–51.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, Chopra AK, Rao VB. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog. 2013;9(7):e1003495.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–96.PubMedCrossRefGoogle Scholar
  225. 225.
    Jones T, Adamovicz JJ, Cyr SL, Bolt CR, Bellerose N, Pitt LM, Lowell GH, Burt DS. Intranasal Protollin/F1-V vaccine elicits respiratory and serum antibody responses and protects mice against lethal aerosolized plague infection. Vaccine. 2006;24(10):1625–32.PubMedCrossRefGoogle Scholar
  226. 226.
    Arulanandam BP, Lynch JM, Briles DE, Hollingshead S, Metzger DW. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect Immun. 2001;69(11):6718–24.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Baron SD, Singh R, Metzger DW. Inactivated Francisella tularensis live vaccine strain protects against respiratory tularemia by intranasal vaccination in an immunoglobulin A-dependent fashion. Infect Immun. 2007;75(5):2152–62.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Metzger DW, Buchanan JM, Collins JT, Lester TL, Murray KS, Van Cleave VH, Vogel LA, Dunnick WA. Enhancement of humoral immunity by interleukin-12. Ann N Y Acad Sci. 1996;795:100–15.PubMedCrossRefGoogle Scholar
  229. 229.
    McKnight AJ, Zimmer GJ, Fogelman I, Wolf SF, Abbas AK. Effects of IL-12 on helper T cell-dependent immune responses in vivo. J Immunol. 1994;152(5):2172–9.PubMedGoogle Scholar
  230. 230.
    Germann T, Bongartz M, Dlugonska H, Hess H, Schmitt E, Kolbe L, Kolsch E, Podlaski FJ, Gately MK, Rude E. Interleukin-12 profoundly up-regulates the synthesis of antigen-specific complement-fixing IgG2a, IgG2b and IgG3 antibody subclasses in vivo. Eur J Immunol. 1995;25(3):823–9.PubMedCrossRefGoogle Scholar
  231. 231.
    Bliss J, VanCleave V, Murray K, Wiencis A, Ketchum M, Maylor R, Haire T, Resmini C, Abbas AK, Wolf SF. IL-12, as an adjuvant, promotes a T helper 1 cell, but does not suppress a T helper 2 cell recall response. J Immunol. 1996;156(3):887–94.PubMedGoogle Scholar
  232. 232.
    Arulanandam BP, Mittler JN, Lee WT, O’Toole M, Metzger DW. Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J Immunol. 2000;164(7):3698–704.PubMedCrossRefGoogle Scholar
  233. 233.
    Arulanandam BP, O’Toole M, Metzger DW. Intranasal interleukin-12 is a powerful adjuvant for protective mucosal immunity. J Infect Dis. 1999;180(4):940–9.PubMedCrossRefGoogle Scholar
  234. 234.
    Kumar D, Kirimanjeswara G, Metzger DW. Intranasal administration of an inactivated Yersinia pestis vaccine with interleukin-12 generates protective immunity against pneumonic plague. Clin Vaccine Immunol. 2011;18(11):1925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Do Y, Didierlaurent AM, Ryu S, Koh H, Park CG, Park S, Perlin DS, Powell BS, Steinman RM. Induction of pulmonary mucosal immune responses with a protein vaccine targeted to the DEC-205/CD205 receptor. Vaccine. 2012;30(45):6359–67.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Dinc G, Pennington JM, Yolcu ES, Lawrenz MB, Shirwan H. Improving the Th1 cellular efficacy of the lead Yersinia pestis rF1-V subunit vaccine using SA-4-1BBL as a novel adjuvant. Vaccine. 2014;32(39):5035–40.PubMedCrossRefGoogle Scholar
  237. 237.
    Alvarez ML, Cardineau GA. Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv. 2010;28(1):184–96.PubMedCrossRefGoogle Scholar
  238. 238.
    Release UN: USDA issues license for plant-cell-produced Newcastle disease vaccine for chickens. January, 2006. Available from http://www.aphis.usda.gov/newsroom/content/2006/01/ndvaccine.shtml. In; 2006.
  239. 239.
    Rybicki EP. Plant-based vaccines against viruses. Virol J. 2014;11(1):205.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Santi L, Giritch A, Roy CJ, Marillonnet S, Klimyuk V, Gleba Y, Webb R, Arntzen CJ, Mason HS. Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc Natl Acad Sci U S A. 2006;103(4):861–6.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Alvarez ML, Pinyerd HL, Crisantes JD, Rigano MM, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine. 2006;24(14):2477–90.PubMedCrossRefGoogle Scholar
  242. 242.
    Alvarez ML, Pinyerd HL, Topal E, Cardineau GA. P19-dependent and P19-independent reversion of F1-V gene silencing in tomato. Plant Mol Biol. 2008;68(1–2):61–79.PubMedCrossRefGoogle Scholar
  243. 243.
    Alvarez ML, Topal E, Martin F, Cardineau GA. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant Mol Biol. 2010;72(1–2):75–89.PubMedCrossRefGoogle Scholar
  244. 244.
    Mett V, Lyons J, Musiychuk K, Chichester JA, Brasil T, Couch R, Sherwood R, Palmer GA, Streatfield SJ, Yusibov V. A plant-produced plague vaccine candidate confers protection to monkeys. Vaccine. 2007;25(16):3014–7.PubMedCrossRefGoogle Scholar
  245. 245.
    Chichester JA, Musiychuk K, Farrance CE, Mett V, Lyons J, Yusibov V. A single component two-valent LcrV-F1 vaccine protects non-human primates against pneumonic plague. Vaccine. 2009;27(25–26):3471–4.PubMedCrossRefGoogle Scholar
  246. 246.
    Del Prete G, Santi L, Andrianaivoarimanana V, Amedei A, Domarle O, D’Elios MM, Arntzen CJ, Rahalison L, Mason HS. Plant-derived recombinant F1, V, and F1-V fusion antigens of Yersinia pestis activate human cells of the innate and adaptive immune system. Int J Immunopathol Pharmacol. 2009;22(1):133–43.PubMedGoogle Scholar
  247. 247.
    Daniell H. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J. 2006;1(10):1071–9.PubMedCrossRefGoogle Scholar
  248. 248.
    Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun. 2008;76(8):3640–50.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Alpuche-Solis AG, Martinez-Gonzalez L, Korban SS. Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta. 2010;232(2):409–16.PubMedCrossRefGoogle Scholar
  250. 250.
    Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Han Y, Alpuche-Solis AG, Korban SS. Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinia pestis are immunogenic in mice. J Plant Physiol. 2011;168(2):174–80.PubMedCrossRefGoogle Scholar
  251. 251.
    Straley SC, Starnbach MN. Yersinia: strategies that thwart immune defenses. In: Cunningham MW, Fujinami RS, editors. Effects of microbes on the immune system. Philadelphia: Lippincott Williams and Wilkins; 2000.Google Scholar
  252. 252.
    Miller NC, Quenee LE, Elli D, Ciletti NA, Schneewind O. Polymorphisms in the lcrV gene of Yersinia enterocolitica and their effect on plague protective immunity. Infect Immun. 2012;80(4):1572–82.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Formal SB, Baron LS, Kopecko DJ, Washington O, Powell C, Life CA. Construction of a potential bivalent vaccine strain: introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain. Infect Immun. 1981;34(3):746–50.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Gonzalez C, Hone D, Noriega FR, Tacket CO, Davis JR, Losonsky G, Nataro JP, Hoffman S, Malik A, Nardin E, et al. Salmonella typhi vaccine strain CVD 908 expressing the circumsporozoite protein of Plasmodium falciparum: strain construction and safety and immunogenicity in humans. J Infect Diseas. 1994;169(4):927–31.CrossRefGoogle Scholar
  255. 255.
    Hone DM, Lewis GK, Beier M, Harris A, McDaniels T, Fouts TR. Expression of human immunodeficiency virus antigens in an attenuated Salmonella typhi vector vaccine. Dev Biol Stand. 1994;82:159–62.PubMedGoogle Scholar
  256. 256.
    Nardelli-Haefliger D, Kraehenbuhl JP, Curtiss 3rd R, Schodel F, Potts A, Kelly S, De Grandi P. Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect Immun. 1996;64(12):5219–24.PubMedPubMedCentralGoogle Scholar
  257. 257.
    Tacket CO, Kelly SM, Schodel F, Losonsky G, Nataro JP, Edelman R, Levine MM, Curtiss 3rd R. Safety and immunogenicity in humans of an attenuated Salmonella typhi vaccine vector strain expressing plasmid-encoded hepatitis B antigens stabilized by the Asd-balanced lethal vector system. Infect Immun. 1997;65(8):3381–5.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Viret JF, Cryz SJ, Lang AB, Favre D. Molecular-cloning and characterization of the genetic-determinants that express the complete Shigella serotype-D (Shigella-sonnei) lipopolysaccharide in heterologous live attenuated vaccine strains. Mol Microbiol. 1993;7(2):239–52.PubMedCrossRefGoogle Scholar
  259. 259.
    Cerquetti MC, Gherardi MM. Orally administered attenuated Salmonella enteritidis reduces chicken cecal carriage of virulent Salmonella challenge organisms. Vet Microbiol. 2000;76(2):185–92.PubMedCrossRefGoogle Scholar
  260. 260.
    Barrow PA, Page K, Lovell MA. The virulence for gnotobiotic pigs of live attenuated vaccine strains of Salmonella enterica serovars Typhimurium and Enteritidis. Vaccine. 2001;19(25–26):3432–6.PubMedCrossRefGoogle Scholar
  261. 261.
    Van der Walt ML, Vorster JH, Steyn HC, Greeff AS. Auxotrophic, plasmid-cured Salmonella enterica serovar Typhimurium for use as a live vaccine in calves. Vet Microbiol. 2001;80(4):373–81.PubMedCrossRefGoogle Scholar
  262. 262.
    Tacket CO, Galen J, Sztein MB, Losonsky G, Wyant TL, Nataro J, Wasserman SS, Edelman R, Chatfield S, Dougan G, et al. Safety and immune responses to attenuated Salmonella enterica serovar Typhi oral live vector vaccines expressing tetanus toxin fragment C. Clin Immunol. 2000;97(2):146–53.PubMedCrossRefGoogle Scholar
  263. 263.
    Lowe DC, Savidge TC, Pickard D, Eckmann L, Kagnoff MF, Dougan G, Chatfield SN. Characterization of candidate live oral Salmonella typhi vaccine strains harboring defined mutations in aroA, aroC, and htrA. Infect Immun. 1999;67(2):700–7.PubMedPubMedCentralGoogle Scholar
  264. 264.
    Khan S, Chatfield S, Stratford R, Bedwell J, Bentley M, Sulsh S, Giemza R, Smith S, Bongard E, Cosgrove CA, et al. Ability of SPI2 mutant of S. typhi to effectively induce antibody responses to the mucosal antigen enterotoxigenic E. coli heat labile toxin B subunit after oral delivery to humans. Vaccine. 2007;25(21):4175–82.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Hohmann EL, Oletta CA, Killeen KP. Miller SI: phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis. 1996;173(6):1408–14.PubMedCrossRefGoogle Scholar
  266. 266.
    Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem-Maghami M, Sexton A, Khan M, Brennan FR, et al. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun. 2002;70(7):3457–67.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    DiPetrillo MD, Tibbetts T, Kleanthous H, Killeen KP, Hohmann EL. Safety and immunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacter pylori urease in adult volunteers. Vaccine. 1999;18(5–6):449–59.PubMedCrossRefGoogle Scholar
  268. 268.
    Curtiss 3rd R, Xin W, Li Y, Kong W, Wanda SY, Gunn B, Wang S. New technologies in using recombinant attenuated Salmonella vaccine vectors. Crit Rev Immunol. 2010;30(3):255–70.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Wang S, Kong Q, Curtiss 3rd R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog. 2013;58:17–28.PubMedCrossRefGoogle Scholar
  270. 270.
    Keeling MJ, Gilligan CA. Metapopulation dynamics of bubonic plague. Nature. 2000;407(6806):903–6.PubMedCrossRefGoogle Scholar
  271. 271.
    Bevins SN, Tracey JA, Franklin SP, Schmit VL, Macmillan ML, Gage KL, Schriefer ME, Logan KA, Sweanor LL, Alldredge MW, et al. Wild felids as hosts for human plague. Western United States. Emerg Infect Dis. 2009;15(12):2021–4.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Poland JD, Barnes AM, Herman JJ. Human bubonic plague from exposure to a naturally infected wild carnivore. Am J Epidemiol. 1973;97(5):332–7.PubMedGoogle Scholar
  273. 273.
    Eisen RJ, Petersen JM, Higgins CL, Wong D, Levy CE, Mead PS, Schriefer ME, Griffith KS, Gage KL, Beard CB. Persistence of Yersinia pestis in soil under natural conditions. Emerg Infect Dis. 2008;14(6):941–3.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Griffin KA, Martin DJ, Rosen LE, Sirochman MA, Walsh DP, Wolfe LL, Miller MW. Detection of Yersinia pestis DNA in prairie dog-associated fleas by polymerase chain reaction assay of purified DNA. J Wildl Dis. 2010;46(2):636–43.PubMedCrossRefGoogle Scholar
  275. 275.
    Wobeser G, Campbell GD, Dallaire A, McBurney S. Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: a review. Can Vet J. 2009;50(12):1251–6.PubMedPubMedCentralGoogle Scholar
  276. 276.
    Eisen RJ, Holmes JL, Schotthoefer AM, Vetter SM, Montenieri JA, Gage KL. Demonstration of early-phase transmission of Yersinia pestis by the mouse flea, Aetheca wagneri (Siphonaptera: Ceratophylidae), and implications for the role of deer mice as enzootic reservoirs. J Med Entomol. 2008;45(6):1160–4.PubMedCrossRefGoogle Scholar
  277. 277.
    Leary SEC, Griffin KF, Galyov EE, Hewer J, Williamson ED, Holmstrom A, Forsberg A, Titball RW. Yersinia outer proteins (YOPS) E, K and N are antigenic but non-protective compared to V antigen, in a murine model of bubonic plague. Microb Pathog. 1999;26(3):159–69.PubMedCrossRefGoogle Scholar
  278. 278.
    Nemeth J, Straley SC. Effect of Yersinia pestis YopM on experimental plague. Infect Immun. 1997;65(3):924–30.PubMedPubMedCentralGoogle Scholar
  279. 279.
    Robinson VL, Oyston PC, Titball RW. A dam mutant of Yersinia pestis is attenuated and induces protection against plague. Fems Microbiol Lett. 2005;252(2):251–6.PubMedCrossRefGoogle Scholar
  280. 280.
    Feodorova VA, Pan’kina LN, Savostina EP, Sayapina LV, Motin VL, Dentovskaya SV, Shaikhutdinova RZ, Ivanov SA, Lindner B, Kondakova AN, et al. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs. Vaccine. 2007;25(44):7620–8.PubMedCrossRefGoogle Scholar
  281. 281.
    Oyston PC, Mellado-Sanchez G, Pasetti MF, Nataro JP, Titball RW, Atkins HS. A Yersinia pestis guaBA mutant is attenuated in virulence and provides protection against plague in a mouse model of infection. Microb Pathog. 2010;48(5):191–5.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Feodorova VA, Devdariani ZL. Immunogeneity and structural organisation of some pLCR-encoded proteins of Yersinia pestis. J Med Microbiol. 2001;50(1):13–22.PubMedCrossRefGoogle Scholar
  283. 283.
    Lathem WW, Crosby SD, Miller VL, Goldman WE. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A. 2005;102(49):17786–91.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, Baze WB, Suarez G, Peterson JW, Chopra AK. Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology. 2008;154(Pt 7):1939–48.PubMedCrossRefGoogle Scholar
  285. 285.
    Oyston PC, Williamson ED, Leary SE, Eley SM, Griffin KF, Titball RW. Immunization with live recombinant Salmonella typhimurium aroA producing F1 antigen protects against plague. Infect Immun. 1995;63(2):563–8.PubMedPubMedCentralGoogle Scholar
  286. 286.
    Bullifent HL, Griffin KF, Jones SM, Yates A, Harrington L, Titball RW. Antibody responses to Yersinia pestis F1-antigen expressed in Salmonella typhimurium aroA from in vivo-inducible promoters. Vaccine. 2000;18(24):2668–76.PubMedCrossRefGoogle Scholar
  287. 287.
    Garmory HS, Leckenby MW, Griffin KF, Elvin SJ, Taylor RR, Hartley MG, Hanak JA, Williamson ED, Cranenburgh RM. Antibiotic-free plasmid stabilization by operator-repressor titration for vaccine delivery by using live Salmonella enterica serovar Typhimurium. Infect Immun. 2005;73(4):2005–11.PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Liu WT, Hsu HL, Liang CC, Chuang CC, Lin HC, Liu YT. A comparison of immunogenicity and protective immunity against experimental plague by intranasal and/or combined with oral immunization of mice with attenuated Salmonella serovar Typhimurium expressing secreted Yersinia pestis F1 and V antigen. FEMS Immunol Med Microbiol. 2007;51(1):58–69.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Torres-Escobar A, Juarez-Rodriguez MD, Gunn BM, Branger CG, Tinge SA, Curtiss III R. Fine-tuning synthesis of Yersinia pestis LcrV from runaway-like replication balanced-lethal plasmid in a Salmonella enterica serovar typhimurium vaccine induces protection against a lethal Y. pestis challenge in mice. Infect Immun. 2010;78(6):2529–43.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Galen JE, Wang JY, Carrasco JA, Lloyd SA, Mellado-Sanchez G, Diaz-McNair J, Franco O, Buskirk AD, Nataro JP, Pasetti MF. A bivalent typhoid live vector vaccine expressing both chromosomal and plasmid-encoded Y. pestis antigens fully protects against murine lethal pulmonary plague infection. Infect Immun. 2014;83:161–72.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Yang X, Hinnebusch BJ, Trunkle T, Bosio CM, Suo Z, Tighe M, Harmsen A, Becker T, Crist K, Walters N, et al. Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague. J Immunol. 2007;178(2):1059–67.PubMedCrossRefGoogle Scholar
  292. 292.
    Welkos S, O’Brien A. Determination of median lethal and infectious doses in animal model systems. Methods Enzymol. 1994;235:29–39.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Infectious Diseases and Pathology, College of Veterinary MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations