Skip to main content

Environmental Interactions

  • Chapter
  • First Online:
  • 722 Accesses

Abstract

Some aspects concerning invertebrates, bacteria and the environment are examined, including the response to man-induced changes. Some services deployed by invertebrates are briefly reviewed. The effects of different contamination types on species involved in farming are described, including the effects of heavy metals, pesticides, and oil spills. The link of climate changes with bacterial diseases is discussed, with a brief review on the role of invasive species in agroecosystems and marine habitats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baldo, L., Bordenstein, S., Wernegreen, J. J., & Werren, J. H. (2006). Widespread recombination throughout Wolbachia genomes. Molecular Biology and Evolution, 23, 437–449.

    Article  CAS  PubMed  Google Scholar 

  • Barsugli, J. J., Shin, S. I., & Sardeshmukh, P. D. (2006). Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dynamics, 27, 483–492.

    Article  Google Scholar 

  • Bell, J. J. (2008). The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 79, 341–353.

    Article  Google Scholar 

  • Blackburn, M., Mazzacano, C. A. S., Fallon, C., & Black, C. A. (2014). Oil in our oceans. A review of the impacts of oil spills on marine invertebrates. Portland: The Xerces Society for Invertebrate Conservation. 152 pp.

    Google Scholar 

  • Boag, B., & Yeates, G. W. (2001). The potential impact of the New Zealand flatworm, a predator of earthworms, in western Europe. Ecological Applications, 11, 1276–1286.

    Article  Google Scholar 

  • Bohlen, P. J., et al. (2004). Non-native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment, 2, 427–435.

    Article  Google Scholar 

  • Bongers, T., Ilieva-Makulec, K., & Ekschmitt, K. (2001). Acute sensitivity of nematode taxa to CuSO4 and relationships with feeding type and life-history classification. Environmental Toxicology and Chemistry, 20, 1511–1516.

    Article  CAS  PubMed  Google Scholar 

  • Bortoluzzi, L., Alves, L. F. A., Alves, V. S., & Holz, N. (2013). Entomopathogenic nematodes and their interaction with chemical insecticide aiming at the control of banana weevil borer, Cosmopolites sordidus Germar (Coleoptera: Curculionidae). Arquivos do Instituto Biológico, 80, 183–192.

    Article  Google Scholar 

  • Brelsfoard, C. L., & Dobson, S. L. (2009). Wolbachia-based strategies to control insect pests and disease vectors. Asia-Pacific Journal of Molecular Biology and Biotechnology, 17, 55–63.

    Google Scholar 

  • Broecker, W. S. (1997). Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278, 1582–1588.

    Article  CAS  PubMed  Google Scholar 

  • Brown, G., et al. (1999). Effects of earthworms on plant production in the tropics. In P. Lavelle, L. Brussaard, & P. Hendrix (Eds.), Earthworm management in tropical agroecosystems (pp. 87–137). Wallingford: CAB International Press.

    Google Scholar 

  • Brown, A. M. V., Huynh, L. Y., Bolender, C. M., Nelson, K. G., & McCutcheon, J. P. (2014). Population genomics of a symbiont in the early stages of a pest invasion. Molecular Ecology, 23, 1516–1530.

    Article  PubMed  Google Scholar 

  • Brussaard, L., Pulleman, M. M., Ouédraogo, E., Abdoulaye Mando, A., & Sixe, J. (2007). Soil fauna and soil function in the fabric of the food web. Pedobiologia, 50, 447–462.

    Article  Google Scholar 

  • Cabrera, J. A., Kurtz, A., Sikora, R. A., & Schouten, A. (2010). Isolation and characterization of fenamiphos degrading bacteria. Biodegradation, 21, 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  • Campos-Herrera, R., El-Borai, F. E., & Duncan, L. W. (2015). It takes a village: Entomopathogenic nematode community structure and conservation biological control in Florida (U.S.) orchards. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (Sustainability in plant and crop protection, Vol. 1, pp. 329–351). Cham: Springer.

    Chapter  Google Scholar 

  • Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Medina, M., et al. (2014). The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience, 7, 423–427.

    Article  CAS  Google Scholar 

  • Crunkilton, R. L., & Duchrow, R. M. (1990). Impact of a massive crude oil spill on the invertebrate fauna of a missouri Ozark stream. Environmental Pollution, 63, 13–31.

    Article  CAS  PubMed  Google Scholar 

  • D’Orgeval, T., Polcher, J., & Li, L. (2006). Uncertainties in modelling future hydrological change over West Africa. Climate Dynamics, 26, 93–108.

    Article  Google Scholar 

  • Dallinger, R. (1994). Invertebrate organisms as biological indicators of heavy metal pollution. Applied Biochemistry and Biotechnology, 48, 27–31.

    Article  CAS  PubMed  Google Scholar 

  • De Luca, F., et al. (2015). Entomopathogenic nematodes in Italy: Occurrence and use in microbial control strategies. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (Sustainability in plant and crop protection, Vol. 1, pp. 431–449). Cham: Springer.

    Chapter  Google Scholar 

  • Dennehy, T. J., et al. (2005). New challenges to management of whitefly resistance to insecticides in Arizona (The University of Arizona Cooperative Extension Report), Tucson, AZ.

    Google Scholar 

  • Drake, L. A., Doblin, M. A., & Dobbs, F. C. (2007). Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine Pollution Bulletin, 55, 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Dumbauld, B. R., Brooks, K. M., & Posey, M. H. (2001). Response of an estuarine benthic community to application of the pesticide carbaryl and cultivation of Pacific oysters (Crassostrea gigas) in Willapa Bay, Washington. Marine Pollution Bulletin, 42, 826–844.

    Article  CAS  PubMed  Google Scholar 

  • Eufemia, N. A., & Epel, D. (2000). Induction of the multixenobiotic defense mechanism (MXR), P-glycoprotein, in the mussel Mytilus californianus as a general cellular response to environmental stresses. Aquatic Toxicology, 49, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, K. L., Armstrong, D. A., Dumbauld, B. R., Dewitt, T. H., & Doty, D. C. (2000). Oysters, crabs, and burrowing shrimp: Review of an environmental conflict over aquatic resources and pesticide in Washington State’s (USA) coastal estuaries use. Estuaries, 23, 141–176.

    Article  CAS  Google Scholar 

  • Ferris, H. (2010). Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97–104.

    Article  Google Scholar 

  • Ferris, H., et al. (2012). Reflections on plant and soil nematode ecology: Past, present and future. Journal of Nematology, 44, 115–126.

    PubMed  PubMed Central  Google Scholar 

  • Hamdoun, A. M., Griffin, F. J., & Cherr, G. N. (2002). Tolerance to biodegraded crude oil in marine invertebrate embryos and larvae is associated with expression of a multixenobiotic resistance transporter. Aquatic Toxicology, 61, 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, A. K., Jeong, G., Paine, T. D., & Stouthamer, R. (2007). Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Applied and Environmental Microbiology, 73, 7531–7535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrick, J. E., & Wander, M. M. (1998). Relationships between soil organic carbon and soil quality in cropped and rangeland soils: The importance of distribution, composition, and soil biological activity. In R. Lal, J. M. Kimble, R. F. Follet, & B. A. Stewart (Eds.), Soil processes and the carbon cycle (pp. 405–426). New York: CRC Press.

    Google Scholar 

  • Hoffmann, A. A., & Turelli, M. (2013). Facilitating Wolbachia introductions into mosquito populations through insecticide-resistance selection. Proceedings of the Royal Society B, 280, 20130371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohberg, K. (2003). Soil nematode fauna of afforested mine sites: Genera distribution, trophic structure and functional guilds. Applied Soil Ecology, 22, 113–126.

    Article  Google Scholar 

  • Ioannidis, P., et al. (2014). Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys. BMC Genomics, 15, 738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340–343.

    Article  CAS  PubMed  Google Scholar 

  • Kampichler, C. (1999). Fractal concepts in studies of soil fauna. Geoderma, 88, 283–300.

    Article  Google Scholar 

  • Kariuki, G. M., & Dickson, D. W. (2007). Transfer and development of Pasteuria penetrans. Journal of Nematology, 39, 55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsanevakis, S., et al. (2014). Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquatic Invasions, 9, 391–423.

    Article  Google Scholar 

  • Kikuchi, Y., et al. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Science, USA, 109, 8618–8622.

    Article  CAS  Google Scholar 

  • Kreutzweiser, D. P., Good, K. P., Chartrand, D. T., Scarr, T. A., & Thompson, D. G. (2008). Toxicity of the systemic insecticide, imidacloprid, to forest stream insects and microbial communities. Bulletin of Environmental and Contamination Toxicology, 80, 211–214.

    Article  CAS  Google Scholar 

  • Kurelec, B., & Pivceviac, B. (1989). Distinct glutathione-dependent enzyme activities and a verapamil sensitive binding of xenobiotics in a freshwater mussel Anodonta cygnea. Biochemical and Biophysical Research Communications, 164, 934–940.

    Article  CAS  PubMed  Google Scholar 

  • Lavelle, P., et al. (2004). Plant parasite control and soil fauna diversity. Comptes Rendus de l’Académie des Sciences, Biologie, 327, 629–638.

    Article  Google Scholar 

  • Lavelle, P., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.

    Article  Google Scholar 

  • Laznik, Z., & Trdan, S. (2013). The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science, 70, 784–789.

    Article  PubMed  Google Scholar 

  • Levin, L. A., & Sibuet, M. (2012). Understanding continental margin biodiversity: A new imperative. Annual Review of Marine Science, 4, 79–112.

    Article  PubMed  Google Scholar 

  • Litchman, E. (2010). Invisible invaders: Non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters, 13, 1560–1572.

    Article  PubMed  Google Scholar 

  • Malan, A., & Hatting, J. L. (2015). Entomopathogenic nematode exploitation: Case studies in laboraory and field applications from South Africa. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests (Sustainability in plant and crop protection, Vol. 1, pp. 477–508). Cham: Springer.

    Chapter  Google Scholar 

  • May, W. (2004). Potential future changes in the Indian summer monsoon due to greenhouse warming: Analysis of mechanisms in a global time-slice experiment. Climate Dynamics, 22, 389–414.

    Article  Google Scholar 

  • McLean, M. A., & Parkinson, D. (2000). Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra the microfungal community in pine forest floor. Soil Biology and Biochemistry, 32, 351–360.

    Article  CAS  Google Scholar 

  • Minier, C., Akcha, F., & Galgani, F. (1993). P-glycoprotein expression in Crassostrea gigas and Mytilus edulis in polluted seawater. Comparative Biochemistry & Physiology, 106(B), 1029–1036.

    CAS  Google Scholar 

  • Murchie, A. K., & Gordon, A. W. (2012). The impact of the ‘New Zealand flatworm’, Arthurdendyus triangulatus, on earthworm populations in the field. Biological Invasions, 15, 569–586.

    Article  Google Scholar 

  • Neher, D. A. (2010). Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology, 48, 371–394.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D. T., Spooner-Hart, R. N., & Riegler, M. (2016). Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biological Invasions, 18, 197–214.

    Article  Google Scholar 

  • Prather, C. M., et al. (2013). Invertebrates, ecosystem services and climate change. Biological Reviews, 88, 327–348.

    Article  PubMed  Google Scholar 

  • Prem Anand, T., et al. (2006). Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiological Research, 161, 252–262.

    Article  PubMed  Google Scholar 

  • Radová, Š. (2010). Effect of selected pesticides on the vitality and virulence of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). Plant Protection Science, 46, 83–88.

    Google Scholar 

  • Raffa, K., et al. (2008). Symbionts of invasive insects: Characterization, ecological roles, and relation to invasive potential and management strategies. Research Forum on Invasive Species, USDA 60–62.

    Google Scholar 

  • Rana, A. K., & Misra-Bhattacharya, S. (2013). Current drug targets for helminthic diseases. Parasitology Research, 112, 1819–1831.

    Article  PubMed  Google Scholar 

  • Rao, J. V., Kavitha, P., Chakra Reddy, N., & Rao, T. G. (2006). Petrosia testudinaria as a biomarker for metal contamination at Gulf of Mannar, southeast coast of India. Chemosphere, 65, 634–638.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Bayo, F. (2012). Insecticides mode of action in relation to their toxicity to non-target organisms. Journal of Environmental & Analytical Toxicology, S4, S4–S002.

    Google Scholar 

  • Sardo, A. M., & Soares, A. M. V. M. (2010). Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic oligochaete Lumbriculus variegatus. Archives of Environmental Contamination and Toxicology, 58, 648–656.

    Article  CAS  PubMed  Google Scholar 

  • Scheu, S. (2003). Effects of earthworms on plant growth: Patterns and perspectives: The 7th international symposium on earthworm ecology Cardiff Wales 2002. Pedobiologia, 47, 846–856.

    Google Scholar 

  • Schmidt, C., et al. (2015). Recent invasion of the symbiont-bearing foraminifera Pararotalia into the Eastern Mediterranean facilitated by the ongoing warming trend. PLoS ONE, 10(8), e0132917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvin, J., Priya, S. S., Kiran, G. S., Thangavelu, T., & Bai, N. S. (2009). Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiological Research, 164, 352–363.

    Article  CAS  PubMed  Google Scholar 

  • Seybold, C. A., Herrick, J. E., & Brejda, J. J. (1999). Soil resilience: A fundamental component of soil quality. Soil Science, 164, 224–234.

    Article  CAS  Google Scholar 

  • Sharp, K. H., Davidson, S. K., & Haywood, M. G. (2007). Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. The ISME Journal, 1, 693–702.

    Article  PubMed  Google Scholar 

  • Shelton, M. E., Chapman, P. J., Foss, S. S., & Fisher, W. S. (1999). Degradation of weathered oil by mixed marine bacteria and the toxicity of accumulated water-soluble material to two marine crustacea. Archives of Environmental Contamination and Toxicology, 36, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Simón, F., et al. (2012). Human and animal dirofilariasis: The emergence of a zoonotic mosaic. Clinical Microbiology Reviews, 25, 507–544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorte, C. J. B., Williams, S. L., & Carlton, J. T. (2010). Marine range shifts and species introductions: Comparative spread rates and community impacts. Global Ecology and Biogeography, 19, 303–316.

    Article  Google Scholar 

  • Stahlhut, J. K., Liebert, A. E., Starks, P. T., Dapporto, L., & Jaenike, J. (2006). Wolbachia in the invasive European paper wasp Polistes dominulus. Insectes Sociaux, 53, 269–273.

    Article  Google Scholar 

  • Stebbing, P. D., et al. (2012). Limited prevalance of gaffkaemia (Aerococcus viridans var. homari) isolated from wild-caught European lobsters Homarus gammarus in England and Wales. Diseases of Aquatic Organisms, 100, 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Stoughton, S. J., Liber, K., Culp, J., & Cessna, A. (2008). Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Archives of Environmental Contamination and Toxicology, 54, 662–673.

    Article  CAS  PubMed  Google Scholar 

  • Su, Q., et al. (2013). Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide. Environmental Entomology, 42, 1265–1271.

    Article  PubMed  Google Scholar 

  • Tabashnik, B. E., Brévault, T., & Carrière, Y. (2013). Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnology, 31, 510–521.

    Article  CAS  PubMed  Google Scholar 

  • Taerum, S. J., et al. (2013). Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE, 80, e78126.

    Article  Google Scholar 

  • Teal, J. M., & Howarth, R. W. (1984). Oil spill studies: A review of ecological effects. Environmental Management, 8, 27–44.

    Article  Google Scholar 

  • Timper, P. (2014, May 4–9). Effect of tillage and fumigation on Pasteuria penetrans. Proceedings of the 6th international congress of nematology, Cape Town, South Africa, pp. 67–68.

    Google Scholar 

  • Toomey, B. H., Kaufman, M. R., & Epel, D. (1996). Marine bacteria produce compounds that modulate multixenobiotic transport activity in Urechis caupo embryos. Marine Environmental Research, 42, 393–397.

    Article  CAS  Google Scholar 

  • Tugel, A. J., et al. (2005). Soil change, soil survey, and natural resources decision making: A blueprint for action. Soil Science Society of America Journal, 69, 738–747.

    Article  CAS  Google Scholar 

  • Van der Putten, W. H., Klironomos, J. N., & Wardle, D. A. (2007). Microbial ecology of biological invasions. The ISME Journal, 1, 28–37.

    Article  PubMed  Google Scholar 

  • Van Dijk, T. C., Van Staalduinen, M. A., & Van der Sluijs, J. P. (2013). Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE, 8, e62374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G., Yoon, S. H., & Lefait, E. (2009). Microbial communities associated with the invasive Hawaiian sponge Mycale armata. The ISME Journal, 3, 374–377.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., et al. (2012). Wolbachia infection decreased the resistance of Drosophila to lead. PLoS ONE, 7, e32643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitten, M. M. A., et al. (2016). Symbiont-mediated RNA interference in insects. Proceedings of the Royal Society B, 283, 20160042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wigley, T. M. L., & Raper, S. C. B. (2001). Interpretation of high projections for global-mean warming. Science, 293, 451–454.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., et al. (2010). The involvement of HSP22 from bay scallop Argopecten irradians in response to heavy metal stress. Molecular Biology Reports, 37, 1763–1771.

    Article  CAS  PubMed  Google Scholar 

  • Zindel, R., Gottlieb, Y., & Aebi, A. (2011). Arthropod symbioses: A neglected parameter in pest- and disease-control programmes. Journal of Applied Ecology, 48, 864–872.

    Article  Google Scholar 

  • Zulka, K. P., & Götzl, M. (2015). Ecosystem services: Pest control and pollination. In K. W. Steininger et al. (Eds.), Economic evaluation of climate change impacts (pp. 169–189). Cham: Springer Climate.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciancio, A. (2016). Environmental Interactions. In: Invertebrate Bacteriology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0884-3_11

Download citation

Publish with us

Policies and ethics