Skip to main content

Photoemission from Nanomaterials in Strong Few-Cycle Laser Fields

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

The application of ultra-short waveform-controlled laser fields to nanostructured materials enables the generation of localized near-fields with well-defined spatiotemporal field evolution. The optical fields that can be tailored on sub-wavelength spatial and attosecond temporal scales have a high potential for the control of ultrafast processes at the nanoscale, with important implications for laser-driven electron acceleration, extreme ultraviolet (XUV) light generation, and nanoscale electronics operating at optical frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zherebtsov, S., et al. (2011). Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Physics, 7, 656.

    Article  ADS  Google Scholar 

  2. Zherebtsov, S., et al. (2012). Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New Journal of Physics, 14, 075010.

    Article  ADS  Google Scholar 

  3. Ahmad, I., et al. (2009). Frontend light source for short-pulse pumped OPCPA system. Applied Physics B: Lasers and Optics, 97(3), 529–536.

    Article  ADS  Google Scholar 

  4. Wittmann, T., et al. (2009). Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nature Physics, 5, 357–362.

    Article  ADS  Google Scholar 

  5. Rathje, T., et al. (2012). Review of attosecond resolved measurement and control via carrier-envelope phase tagging with above-threshold ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074003.

    Article  ADS  Google Scholar 

  6. Süßmann, F., et al. (2011). Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate. The Review of Scientific Instruments, 82, 093109.

    Article  Google Scholar 

  7. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62.

    Article  Google Scholar 

  8. Sau, T. K., & Murphy, C. J. (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society, 126(28), 8648–8649.

    Article  Google Scholar 

  9. Süßmann, F. (2013). Dissertation LMU Munich.

    Google Scholar 

  10. Süßmann, F., et al. (2015). Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres. Nature Communications, 6.

    Google Scholar 

  11. Seiffert, L., et al. (2015). Competition of single and double rescattering in the strong-field photoemission from dielectric nanospheres. Applied Physics B: Lasers and Optics, 122, 101.

    Article  ADS  Google Scholar 

  12. Otobe, T., Yabana, K., & Iwata, J. I. (2009). First-principles calculation of the electron dynamics in crystalline SiO 2. Journal of Physics. Condensed Matter, 21(6), 064224.

    Article  ADS  Google Scholar 

  13. Durach, M., et al. (2010). Metallization of nanofilms in strong adiabatic electric fields. Physical Review Letters, 105(8), 086803.

    Article  ADS  Google Scholar 

  14. Stuart, B. C., et al. (1996). Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Physical Review B, 53(4), 1749–1761.

    Article  ADS  Google Scholar 

  15. Gamaly, E. (2011). Femtosecond laser-matter interactions: Theory, experiments and applications. Singapore: Pan Stanford Publishing.

    Google Scholar 

  16. Lenzner, M., et al. (1998). Femtosecond optical breakdown in dielectrics. Physical Review Letters, 80(18), 4076–4079.

    Article  ADS  Google Scholar 

  17. Schiffrin, A., et al. (2013). Optical-field-induced current in dielectrics. Nature, 493(7430), 70–74.

    Article  ADS  Google Scholar 

  18. Dombi, P., et al. (2010). Observation of few-cycle, strong-field phenomena in surface plasmon fields. Optics Express, 18(23), 24206–24212.

    Article  ADS  Google Scholar 

  19. Vogelsang, J., et al. (2015). Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Letters, 15(7), 4685–4691.

    Article  ADS  Google Scholar 

  20. Hanke, T., et al. (2009). Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Physical Review Letters, 103(25), 257404.

    Article  ADS  Google Scholar 

  21. Anderson, A., et al. (2010). Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Letters, 10(7), 2519–2524.

    Article  ADS  Google Scholar 

  22. Rewitz, C., et al. (2012). Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry. Nano Letters, 12(1), 45–49.

    Article  ADS  Google Scholar 

  23. Stockman, M. I., et al. (2007). Attosecond nanoplasmonic-field microscope. Nature Photonics, 1(9), 539–544.

    Article  ADS  Google Scholar 

  24. Kienberger, R., et al. (2004). Atomic transient recorder. Nature, 427(6977), 817–821.

    Article  ADS  Google Scholar 

  25. Okell, W. A., et al. (2015). Temporal broadening of attosecond photoelectron wavepackets from solid surfaces. Optica, 2(4), 383–387.

    Article  Google Scholar 

  26. Cavalieri, A. L., et al. (2007). Attosecond spectroscopy in condensed matter. Nature, 449(7165), 1029–1032.

    Article  ADS  Google Scholar 

  27. Neppl, S., et al. (2012). Attosecond time-resolved photoemission from core and valence states of magnesium. Physical Review Letters, 109(8), 087401.

    Article  ADS  Google Scholar 

  28. Skopalova, E., et al. (2011). Numerical simulation of attosecond nanoplasmonic streaking. New Journal of Physics, 13, 083003.

    Article  ADS  Google Scholar 

  29. Kelkensberg, F., Koenderink, A. F., & Vrakking, M. J. J. (2012). Attosecond streaking in a nano-plasmonic field. New Journal of Physics, 14, 093034.

    Article  ADS  Google Scholar 

  30. Hansen, P. M., et al. (2005). Expanding the optical trapping range of gold nanoparticles. Nano Letters, 5(10), 1937–1942.

    Article  ADS  Google Scholar 

  31. Süßmann, F., & Kling, M. F. (2011). Attosecond nanoplasmonic streaking of localized fields near metal nanospheres. Physical Review B, 84, 121406(R).

    Article  ADS  Google Scholar 

  32. Schenk, M., Kruger, M., & Hommelhoff, P. (2010). Strong-field above-threshold photoemission from sharp metal tips. Physical Review Letters, 105(25), 257601.

    Article  ADS  Google Scholar 

  33. Bormann, R., et al. (2010). Tip-enhanced strong-field photoemission. Physical Review Letters, 105(14), 147601.

    Article  ADS  Google Scholar 

  34. Krüger, M., Schenk, M., & Hommelhoff, P. (2011). Attosecond control of electrons emitted from a nanoscale metal tip. Nature, 475(7354), 78–81.

    Article  Google Scholar 

  35. Herink, G., et al. (2012). Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 483(7388), 190–193.

    Article  ADS  Google Scholar 

  36. Piglosiewicz, B., et al. (2014). Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 8(1), 37–42.

    Article  ADS  Google Scholar 

  37. Yanagisawa, H., et al. (2009). Optical control of field-emission sites by femtosecond laser pulses. Physical Review Letters, 103(25), 257603.

    Article  ADS  Google Scholar 

  38. Thomas, S., et al. (2013). Probing of optical near-fields by electron rescattering on the 1 nm scale. Nano Letters, 13(10), 4790–4794.

    Article  ADS  Google Scholar 

  39. Park, D. J., et al. (2013). Characterizing the optical near-field in the vicinity of a sharp metallic nanoprobe by angle-resolved electron kinetic energy spectroscopy. Annals of Physics (Berlin), 525(1-2), 135–142.

    Article  Google Scholar 

  40. Lienau, C., Raschke, M. B., & Ropers, C. (2015). Ultrafast nano-focusing for imaging and spectroscopy with electrons and Light, in attosecond nanophysics: From basic science to applications (pp. 281–324). Weinheim: Wiley-VCH.

    Google Scholar 

  41. Förg, B., et al. (2016). Attosecond nanoscale near-field sampling. Nature Communications, 7, 11717.

    Article  ADS  Google Scholar 

  42. Eisele, M., et al. (2011). Note: Production of sharp gold tips with high surface quality. The Review of Scientific Instruments, 82(2), 026101.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from our collaborators and colleagues that contributed to the presented work. We acknowledge funding by the DFG via SPP1840 (QUTIF), SPP1391, LMUexcellent and the center of excellence “Munich Centre for Advanced Photonics” and by the EU via the ERC grants “ATTOCO” (no. 307203) and “Near Field Atto” (no. 616823).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingcao Liu or Matthias F. Kling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Liu, Q. et al. (2017). Photoemission from Nanomaterials in Strong Few-Cycle Laser Fields. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics