Photoemission from Nanomaterials in Strong Few-Cycle Laser Fields

  • Qingcao Liu
  • Philipp Rupp
  • Benjamin Förg
  • Johannes Schötz
  • Frederik Süßmann
  • William Okell
  • Johannes Passig
  • Josef Tiggesbäumker
  • Karl-Heinz Meiwes-Broer
  • Lennart Seiffert
  • Thomas Fennel
  • Eckart Rühl
  • Michael Förster
  • Peter Hommelhoff
  • Sergey Zherebtsov
  • Matthias F. Kling
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The application of ultra-short waveform-controlled laser fields to nanostructured materials enables the generation of localized near-fields with well-defined spatiotemporal field evolution. The optical fields that can be tailored on sub-wavelength spatial and attosecond temporal scales have a high potential for the control of ultrafast processes at the nanoscale, with important implications for laser-driven electron acceleration, extreme ultraviolet (XUV) light generation, and nanoscale electronics operating at optical frequencies.

References

  1. 1.
    Zherebtsov, S., et al. (2011). Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Physics, 7, 656.ADSCrossRefGoogle Scholar
  2. 2.
    Zherebtsov, S., et al. (2012). Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New Journal of Physics, 14, 075010.ADSCrossRefGoogle Scholar
  3. 3.
    Ahmad, I., et al. (2009). Frontend light source for short-pulse pumped OPCPA system. Applied Physics B: Lasers and Optics, 97(3), 529–536.ADSCrossRefGoogle Scholar
  4. 4.
    Wittmann, T., et al. (2009). Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nature Physics, 5, 357–362.ADSCrossRefGoogle Scholar
  5. 5.
    Rathje, T., et al. (2012). Review of attosecond resolved measurement and control via carrier-envelope phase tagging with above-threshold ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074003.ADSCrossRefGoogle Scholar
  6. 6.
    Süßmann, F., et al. (2011). Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate. The Review of Scientific Instruments, 82, 093109.CrossRefGoogle Scholar
  7. 7.
    Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62.CrossRefGoogle Scholar
  8. 8.
    Sau, T. K., & Murphy, C. J. (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society, 126(28), 8648–8649.CrossRefGoogle Scholar
  9. 9.
    Süßmann, F. (2013). Dissertation LMU Munich.Google Scholar
  10. 10.
    Süßmann, F., et al. (2015). Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres. Nature Communications, 6.Google Scholar
  11. 11.
    Seiffert, L., et al. (2015). Competition of single and double rescattering in the strong-field photoemission from dielectric nanospheres. Applied Physics B: Lasers and Optics, 122, 101.ADSCrossRefGoogle Scholar
  12. 12.
    Otobe, T., Yabana, K., & Iwata, J. I. (2009). First-principles calculation of the electron dynamics in crystalline SiO 2. Journal of Physics. Condensed Matter, 21(6), 064224.ADSCrossRefGoogle Scholar
  13. 13.
    Durach, M., et al. (2010). Metallization of nanofilms in strong adiabatic electric fields. Physical Review Letters, 105(8), 086803.ADSCrossRefGoogle Scholar
  14. 14.
    Stuart, B. C., et al. (1996). Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Physical Review B, 53(4), 1749–1761.ADSCrossRefGoogle Scholar
  15. 15.
    Gamaly, E. (2011). Femtosecond laser-matter interactions: Theory, experiments and applications. Singapore: Pan Stanford Publishing.Google Scholar
  16. 16.
    Lenzner, M., et al. (1998). Femtosecond optical breakdown in dielectrics. Physical Review Letters, 80(18), 4076–4079.ADSCrossRefGoogle Scholar
  17. 17.
    Schiffrin, A., et al. (2013). Optical-field-induced current in dielectrics. Nature, 493(7430), 70–74.ADSCrossRefGoogle Scholar
  18. 18.
    Dombi, P., et al. (2010). Observation of few-cycle, strong-field phenomena in surface plasmon fields. Optics Express, 18(23), 24206–24212.ADSCrossRefGoogle Scholar
  19. 19.
    Vogelsang, J., et al. (2015). Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Letters, 15(7), 4685–4691.ADSCrossRefGoogle Scholar
  20. 20.
    Hanke, T., et al. (2009). Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Physical Review Letters, 103(25), 257404.ADSCrossRefGoogle Scholar
  21. 21.
    Anderson, A., et al. (2010). Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Letters, 10(7), 2519–2524.ADSCrossRefGoogle Scholar
  22. 22.
    Rewitz, C., et al. (2012). Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry. Nano Letters, 12(1), 45–49.ADSCrossRefGoogle Scholar
  23. 23.
    Stockman, M. I., et al. (2007). Attosecond nanoplasmonic-field microscope. Nature Photonics, 1(9), 539–544.ADSCrossRefGoogle Scholar
  24. 24.
    Kienberger, R., et al. (2004). Atomic transient recorder. Nature, 427(6977), 817–821.ADSCrossRefGoogle Scholar
  25. 25.
    Okell, W. A., et al. (2015). Temporal broadening of attosecond photoelectron wavepackets from solid surfaces. Optica, 2(4), 383–387.CrossRefGoogle Scholar
  26. 26.
    Cavalieri, A. L., et al. (2007). Attosecond spectroscopy in condensed matter. Nature, 449(7165), 1029–1032.ADSCrossRefGoogle Scholar
  27. 27.
    Neppl, S., et al. (2012). Attosecond time-resolved photoemission from core and valence states of magnesium. Physical Review Letters, 109(8), 087401.ADSCrossRefGoogle Scholar
  28. 28.
    Skopalova, E., et al. (2011). Numerical simulation of attosecond nanoplasmonic streaking. New Journal of Physics, 13, 083003.ADSCrossRefGoogle Scholar
  29. 29.
    Kelkensberg, F., Koenderink, A. F., & Vrakking, M. J. J. (2012). Attosecond streaking in a nano-plasmonic field. New Journal of Physics, 14, 093034.ADSCrossRefGoogle Scholar
  30. 30.
    Hansen, P. M., et al. (2005). Expanding the optical trapping range of gold nanoparticles. Nano Letters, 5(10), 1937–1942.ADSCrossRefGoogle Scholar
  31. 31.
    Süßmann, F., & Kling, M. F. (2011). Attosecond nanoplasmonic streaking of localized fields near metal nanospheres. Physical Review B, 84, 121406(R).ADSCrossRefGoogle Scholar
  32. 32.
    Schenk, M., Kruger, M., & Hommelhoff, P. (2010). Strong-field above-threshold photoemission from sharp metal tips. Physical Review Letters, 105(25), 257601.ADSCrossRefGoogle Scholar
  33. 33.
    Bormann, R., et al. (2010). Tip-enhanced strong-field photoemission. Physical Review Letters, 105(14), 147601.ADSCrossRefGoogle Scholar
  34. 34.
    Krüger, M., Schenk, M., & Hommelhoff, P. (2011). Attosecond control of electrons emitted from a nanoscale metal tip. Nature, 475(7354), 78–81.CrossRefGoogle Scholar
  35. 35.
    Herink, G., et al. (2012). Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 483(7388), 190–193.ADSCrossRefGoogle Scholar
  36. 36.
    Piglosiewicz, B., et al. (2014). Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 8(1), 37–42.ADSCrossRefGoogle Scholar
  37. 37.
    Yanagisawa, H., et al. (2009). Optical control of field-emission sites by femtosecond laser pulses. Physical Review Letters, 103(25), 257603.ADSCrossRefGoogle Scholar
  38. 38.
    Thomas, S., et al. (2013). Probing of optical near-fields by electron rescattering on the 1 nm scale. Nano Letters, 13(10), 4790–4794.ADSCrossRefGoogle Scholar
  39. 39.
    Park, D. J., et al. (2013). Characterizing the optical near-field in the vicinity of a sharp metallic nanoprobe by angle-resolved electron kinetic energy spectroscopy. Annals of Physics (Berlin), 525(1-2), 135–142.CrossRefGoogle Scholar
  40. 40.
    Lienau, C., Raschke, M. B., & Ropers, C. (2015). Ultrafast nano-focusing for imaging and spectroscopy with electrons and Light, in attosecond nanophysics: From basic science to applications (pp. 281–324). Weinheim: Wiley-VCH.Google Scholar
  41. 41.
    Förg, B., et al. (2016). Attosecond nanoscale near-field sampling. Nature Communications, 7, 11717.ADSCrossRefGoogle Scholar
  42. 42.
    Eisele, M., et al. (2011). Note: Production of sharp gold tips with high surface quality. The Review of Scientific Instruments, 82(2), 026101.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Qingcao Liu
    • 1
    • 2
  • Philipp Rupp
    • 1
    • 2
  • Benjamin Förg
    • 1
    • 2
  • Johannes Schötz
    • 1
    • 2
  • Frederik Süßmann
    • 1
    • 2
  • William Okell
    • 2
  • Johannes Passig
    • 3
  • Josef Tiggesbäumker
    • 3
  • Karl-Heinz Meiwes-Broer
    • 3
  • Lennart Seiffert
    • 3
  • Thomas Fennel
    • 3
  • Eckart Rühl
    • 4
  • Michael Förster
    • 2
    • 5
  • Peter Hommelhoff
    • 2
    • 5
  • Sergey Zherebtsov
    • 1
    • 2
  • Matthias F. Kling
    • 1
    • 2
  1. 1.Department of PhysicsLMU MunichGarchingGermany
  2. 2.Max Planck Institute of Quantum OpticsGarchingGermany
  3. 3.Institut für PhysikUniversität RostockRostockGermany
  4. 4.Physical ChemistryFreie Universität BerlinBerlinGermany
  5. 5.Department of PhysicsFriedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations