Nanoplasmonic and Microfluidic Devices for Biological Sensing

  • G. Perozziello
  • A. Giugni
  • M. Allione
  • B. Torre
  • G. Das
  • M. L. Coluccio
  • M. Marini
  • L. Tirinato
  • M. Moretti
  • T. Limongi
  • P. Candeloro
  • Enzo Di FabrizioEmail author
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.


Surface Enhance Raman Scattering Microfluidic Device Localize Surface Plasmon Resonance Raman Signal Field Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge all contributors that contributed in this work from other institution, in particular the researchers from the previous Nanostructure Division at IIT (Italian Institute of Technology) in Genoa.

We thank for the financial support the King Abdullah University of Science and Technology start-up fund and the Italian Minister of Health (projects nos. GR-2010-2320665 and GR-2010-2311677)


  1. 1.
    Maier, S. A. (2007). Plasmonics: Fundamentals and applications. New York: Springer. ISBN 0-387-33150-6.Google Scholar
  2. 2.
    Giugni, A., Torre, B., Allione, M., Gentile, F., Candeloro, P., Coluccio, M. L., Perozziello, G., Limongi, T., Marini, M., Raimondo, R., Tirinato, L., Francardi, M., Das, G., Proietti Zaccaria, R., Falqui, A., & Di Fabrizio, E. (2015). Novel plasmonic probes and smart superhydrophobic devices, New tools for forthcoming spectroscopies at the nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics, 68, 209–235.Google Scholar
  3. 3.
    De Angelis, F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., et al. (2011). Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics, 5, 682–7.ADSCrossRefGoogle Scholar
  4. 4.
    Le Ru, E. C., Etchegoin, P. G., Grand, J., Felidj, N., Aubardì, J., & Lévi, G. (2008). Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Current Applied Physics, 8, 467–70.ADSCrossRefGoogle Scholar
  5. 5.
    Qiu, T., & Chu, P. K. (2008). Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials. Materials Science and Engineering, 61, 59–77.CrossRefGoogle Scholar
  6. 6.
    De Angelis, F., Das, G., Candeloro, P., Patrini, M., Galli, M., Bek, A., et al. (2010). Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polariton. Nature Nanotechnology, 5, 67–72.ADSCrossRefGoogle Scholar
  7. 7.
    Das, G., Mecarini, F., Gentile, F., De Angelis, F., Kumar, M. H. G., Candeloro, P., et al. (2009). Nano-patterned SERS substrate: Application for protein analysis vs. temperature. Biosensors and Bioelectronics, 24, 1693–9.CrossRefGoogle Scholar
  8. 8.
    Michaels, A. M., Jiang, J., & Brus, L. (2000). Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 104, 11965.CrossRefGoogle Scholar
  9. 9.
    Li, K., Stockman, M. I., & Bergman, D. J. (2003). Self-similar chain of metal nanospheres as an efficient nanolens. Physical Review Letters, 91, 227402.ADSCrossRefGoogle Scholar
  10. 10.
    Dai, J., Čajko, F., Tsukerman, I., & Stockman, M. (2008). Electrodynamic effects in plasmonic nanolenses. Physical Review Letters, 77, 115419.Google Scholar
  11. 11.
    Schofield, S. R., Studer, P., Hirjibehedin, C. F., Curson, N. J., Aeppli, G., & Bowler, D. R. (2013). Quantum engineering at the silicon surface using dangling bonds. Nature Communications, 4, 1–7.CrossRefGoogle Scholar
  12. 12.
    Coluccio, M. L., Gentile, F., Francardi, M., Perozziello, G., Malara, N., Candeloro, P., Di Fabrizio, E., et al. (2014). Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications. Sensors, 14, 6056–6083.CrossRefGoogle Scholar
  13. 13.
    Coluccio, M. L., Gentile, F., Das, G., Perozziello, G., Malara, N., Alrasheed, S., Candeloro, P., & Di Fabrizio, E. (2015). From nucleotides to DNA analysis by a SERS substrate of a self similar chain of silver nanospheres. Journal of Optics, 17, 114021.ADSCrossRefGoogle Scholar
  14. 14.
    Chirumamilla, M., Toma, A., Gopalakrishnan, A., Das, G., Zaccaria, R. P., Krahne, R., Rondanina, E., Leoncini, M., Liberale, C., De Angelis, F., & Di Fabrizioe, E. (2014). 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering. Advanced Materials, 26, 2353–2358.CrossRefGoogle Scholar
  15. 15.
    De Angelis, F., Proietti, R. Z., Francardi, M., Liberale, C., & Di Fabrizio, E. (2011). Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. Optics Express, 19, 22268–79.ADSCrossRefGoogle Scholar
  16. 16.
    Proietti, R. Z., Alabastri, A., De Angelis, F., Das, G., Liberale, C., & Toma, A. (2012). Fully analytical description of adiabatic compression in dissipative polaritonic structures. Physical Review B, 86, 035410.ADSCrossRefGoogle Scholar
  17. 17.
    Proietti, R. Z., De Angelis, F., Toma, A., Razzari, L., Alabastri, A., & Das, G. (2012). Surface plasmon polariton compression through radially and linearly polarized source. Optics Letters, 37, 545–7.ADSCrossRefGoogle Scholar
  18. 18.
    Coluccio, M. L., Francardi, M., Gentile, F., Candeloro, P., Ferrara, L., Perozziello, G., & Di Fabrizio, E. (2016). Plasmonic 3D-structures based on silver decorated nanotips for biological sensing. Optics and Lasers in Engineering, 76(9), 45–51.ADSCrossRefGoogle Scholar
  19. 19.
    Coluccio, M. L., Gentile, F., Das, G., Nicastri, A., Perri, A. M., Candeloro, P., Perozziello, G., Proietti, R., Totero-Gongora, J. S., Alrasheed, S., Fratalocchi, A., Limongi, T., Cuda, G., & Di Fabrizio, E. (2015). Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Science Advances, 1(8), e1500487.ADSCrossRefGoogle Scholar
  20. 20.
    Kiyotsugu, Y., & Yoshio, M. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Science, 95, 866–871.CrossRefGoogle Scholar
  21. 21.
    Scully, R., Ganesan, S., Vlasakova, K., Chen, J., Socolovsky, M., & Livingston, D. M. (1999). Genetic analysis of BRCA1 function in a defined tumor cell line. Molecular Cell, 4, 1093–1099.CrossRefGoogle Scholar
  22. 22.
    Prado, E., Colin, A., Servant, L., Lecomte, S., & Phys, J. (2014). SERS spectra of oligonucleotides as fingerprints to detect label-free RNA in microfluidic devices. Journal Physical Chemistry C, 118, 13965–71.CrossRefGoogle Scholar
  23. 23.
    Wu, Y. C., Lo, W. Y., Chiu, C. R., & Yang, T. S. (2006). Surface enhanced Raman spectra of oligonucleotides induced by spermine. Journal of Raman Spectroscopy, 3, 799–807.ADSCrossRefGoogle Scholar
  24. 24.
    Perozziello, G., Møllenbach, J., Laursen, S., di Fabrizio, E., Gernaey, K., & Krühne, U. (2012). Lab on a chip automates in vitro cell culturing. Microelectronic Engineering, 98, 655–658.CrossRefGoogle Scholar
  25. 25.
    Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373.ADSCrossRefGoogle Scholar
  26. 26.
    Simone, G., Perozziello, G., & Nanosci, J. (2011). UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers. Nanotechnology, 11(3), 2057–2063.Google Scholar
  27. 27.
    Yu, A., Savas, T., Cabrini, S., Difabrizio, E., Smith, H. I., Stellacci, F., & Am, J. (2005). High resolution printing of DNA feature on poly (methyl methacrylate) substrates using supramolecular nano-stamping. Chemical Society, 127(48), 16774–16775.CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Park, S., Yang, S., & Wang, T. H. (2010). An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomedical Microdevices, 12(6), 1043–1049.CrossRefGoogle Scholar
  29. 29.
    Keramas, G., Perozziello, G., Geschke, O., & Christensen, C. B. V. (2004). Development of a multiplex microarray microsystem. Lab on a Chip, 4(2), 152–158.CrossRefGoogle Scholar
  30. 30.
    Liu, K., & Fan, Z. H. (1011). Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst (London), 136(7), 1288–1297.CrossRefGoogle Scholar
  31. 31.
    Wu, J., Wu, X. Z., Huang, T., & Pawliszyn, J. (2004). Analysis of proteins by CE, CIEF, and microfluidic devices with whole-column-imaging detection. In M. A. Strege, & A. L. Lagu (Eds.), Methods in molecular biology, vol. 276: capillary electrophoresis of proteins and peptides (pp. 229–252). Totowa: Humana Press.Google Scholar
  32. 32.
    Perozziello, G., Candeloro, P., Gentile, F., Coluccio, M. L., Tallerico, M., De Grazia, A., Nicastri, A., Perri, A. M., Parrotta, E., Pardeo, F., Catalano, R., Cuda, G., & Di Fabrizio, E. (2015). A microfluidic dialysis device for complex biological mixture SERS analysis. Microelectronic Engineering, 144, 37–41.CrossRefGoogle Scholar
  33. 33.
    Tekin, H. C., Scherz, C., & Gijs, M. A. M. (2011). Microfluidic device for analysis of protein biomarkers using magnetic bead surface coverage detection. In Proceedings of the 15th international conference on miniaturized systems for chemistry and life sciences (MicroTAS, 2011).Google Scholar
  34. 34.
    Perozziello, G., Candeloro, P., Gentile, F., Nicastri, A., Perri, A., Coluccio, M. L., Adamo, A., Pardeo, F., Catalano, R., Parrotta, E., Espinosa, H. D., Cuda, G., & Di Fabrizio, E. (2014). Microfluidics & nanotechnology: towards fully integrated analytical devices for the detection of cancer biomarkers. RSC Advances, 4(98), 55590–55598.CrossRefGoogle Scholar
  35. 35.
    Perozziello, G., La Rocca, R., Cojoc, G., Liberale, C., Malara, N., Simone, G., Candeloro, P., Anichini, A., Tirinato, L., Gentile, F., Coluccio, M. L., Carbone, E., & Di Fabrizio, E. (2012). Microfluidic devices modulate tumor cell line susceptibility to NK cell recognition, Small. Small, 8(18), 2886–2894.CrossRefGoogle Scholar
  36. 36.
    Simone, G., & Perozziello, G. (2010). Ca2+ mediates the adhesion of breast cancer cells in self-assembled multifunctional microfluidic chip prepared with carbohydrate beads. Micro and Nanosystems, 2(4), 261–268.CrossRefGoogle Scholar
  37. 37.
    Simone, G., Perozziello, G., Battista, E., De Angelis, F., Candeloro, P., Gentile, F., Malara, N., Manz, A., Carbone, E., Netti, P., & Di Fabrizio, E. (2012). Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system. Microelectronic Engineering, 98, 668–671.CrossRefGoogle Scholar
  38. 38.
    Perozziello, G., Simone, G., Malara, N., La Rocca, R., Tallerico, R., Catalano, R., Pardeo, F., Candeloro, P., Cuda, G., Carbone, E., & Di Fabrizio, E. (2013). Microfluidic biofunctionalisation protocols to form multi-valent interactions for cell rolling and phenotype modification investigations. Electrophoresis, 34(13), 1845–1851.CrossRefGoogle Scholar
  39. 39.
    Perozziello, G., Catalano, R., Francardi, M., Rondanina, E., Pardeo, F., De Angelis, F., Malara, N., Candeloro, P., Morrone, G., & Di Fabrizio, E. (2013). A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells. Microelectronic Engineering, 111, 314–319.CrossRefGoogle Scholar
  40. 40.
    Kwan, J. M., Guo, Q., Kyluik-Price, D. L., Ma, H., & Scott, M. D. (2013). Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells. American Journal of Hematology, 88(8), 682–689.CrossRefGoogle Scholar
  41. 41.
    Faustino, V., Pinho, D., Yaginuma, T., Calhelha, R. C., Ferreira, I. C., & Lima, R. (2014). Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip Journal, 8(1), 42–47.CrossRefGoogle Scholar
  42. 42.
    Notingher, I., Verrier, S., Romanska, H., Bishop, A. E., Polak, J. M., & Hench, L. L. (2002). In situ characterisation of living cells by Raman spectroscopy. Spectroscopy, 16, 43–51.CrossRefGoogle Scholar
  43. 43.
    Verrier, S., Notingher, I., Polak, J. M., & Hench, L. L. (2004). In situ monitoring of cell death using Raman microspectroscopy. Biopolymers, 74, 157–162.CrossRefGoogle Scholar
  44. 44.
    Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., & Otto, C. (2003). Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical Journal, 84, 3968–3981.ADSCrossRefGoogle Scholar
  45. 45.
    Short, K. W., Carpenter, S., Freyer, J. P., & Mourant, J. R. (2005). Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophysical Journal, 88, 4274–4288.ADSCrossRefGoogle Scholar
  46. 46.
    Notingher, I., Jell, G., Lohbauer, U., Salih, V., & Hench, L. L. (2004). In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. Journal of Cellular Biochemistry, 92, 1180–1192.CrossRefGoogle Scholar
  47. 47.
    Cheng, I. F., Chang, H.-C., Hou, D., & Chang, H.-C. (2007). An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics, 1, 21503.CrossRefGoogle Scholar
  48. 48.
    Huh, Y. S., Chung, A. J., & Erickson, D. (2009). Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics, 6, 285–297.CrossRefGoogle Scholar
  49. 49.
    Ramser, K., Enger, J., Goksoer, M., Hanstorp, D., Logg, K., & Kaell, M. (2005). A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab on a Chip, 5, 431–436.CrossRefGoogle Scholar
  50. 50.
    Perozziello, G., Candeloro, P., De Grazia, A., Esposito, F., Allione, M., Coluccio, M. L., Tallerico, R., Valpapuram, I., Tirinato, L., Das, G., Giugni, A., Torre, B., Veltri, P., Kruhne, U., Della Valle, G., & Di Fabrizio, E. (2016). Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers. Optics Express, 24(2), A180–A190.ADSCrossRefGoogle Scholar
  51. 51.
    Wood, B. R., Caspers, P., Puppels, G. J., Pandiancherri, S., & McNaughton, D. (2007). Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Analytical and Bioanalytical Chemistry, 387(5), 1691–1703.CrossRefGoogle Scholar
  52. 52.
    Bankapur, A., Zachariah, E., Chidangil, S., Valiathan, M., & Mathur, D. (2010). Raman tweezers spectroscopy of live, single red and white blood cells. PLoS One, 5(4), e10427.ADSCrossRefGoogle Scholar
  53. 53.
    Tallerico, R., Todaro, M., Di Franco, S., Maccalli, C., Garofalo, C., Sottile, R., Palmieri, C., Tirinato, L., Pangigadde, P. N., La Rocca, R., Mandelboim, O., Stassi, G., Di Fabrizio, E., Parmiani, G., Moretta, A., Dieli, F., Kärre, K., & Carbone, E. (2013). Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class I molecules. The Journal of Immunology, 190(5), 2381–2390.CrossRefGoogle Scholar
  54. 54.
    Ong, Y. H., Lim, M., & Liu, Q. (2012). Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Optics Express, 20(20), 22158–22171.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • G. Perozziello
    • 1
  • A. Giugni
    • 2
  • M. Allione
    • 2
  • B. Torre
    • 2
  • G. Das
    • 2
  • M. L. Coluccio
    • 1
  • M. Marini
    • 2
  • L. Tirinato
    • 2
  • M. Moretti
    • 2
  • T. Limongi
    • 2
  • P. Candeloro
    • 1
  • Enzo Di Fabrizio
    • 2
    Email author
  1. 1.Bionem Lab, Departement of Experimental Clinics, Campus “Salvatore Venuta”University Magna Graecia88100 Germaneto-CatanzaroItaly
  2. 2.Physical Science and Engineering Division (PSE)King Abdullah University of Science and Technology (KAUST)Thuwal 23955-6900Saudi Arabia

Personalised recommendations