Natural Product Anticancer Drugs

  • Kyu-Won Kim
  • Jae Kyung Roh
  • Hee-Jun Wee
  • Chan Kim


Natural product anticancer drugs that are used clinically include compounds isolated from plants such as the vinca alkaloids, taxane/taxane analogues, podophyllotoxin derivatives, and camptothecin derivatives, as well as anticancer antibiotics isolated from various Streptomyces species such as anthracycline/anthracenedione, bleomycin, and actinomycin (Fig. 6.1). Vinca alkaloids and taxane/taxane analogues exhibit anticancer effects by inhibiting the microtubule function of spindle fibers, which is related to chromosome segregation, while podophyllotoxin derivatives, camptothecin derivatives, and other antibiotics cleave DNA bases, causing DNA damage through the suppression of topoisomerase I or II and the production of free radicals.


Acute Myeloid Leukemia Chronic Myeloid Leukemia Anticancer Effect Chronic Myeloid Leukemia Patient Vinca Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lits FJ (1934) Contribution a l’étude des réactions cellulaires provoquées par la colchicine. Compt rend Soc de biol 115:1421Google Scholar
  2. 2.
    Dustin AP (1934) Contribution a l’étude de l’action des poisons caryoclasiques sur les tumeurs animales; action delacoichicine sur le sarcome greffé, type Crocker, de la souris. Bull Acad roy de med de Belgique 14:487Google Scholar
  3. 3.
    Noble RL, Beer CT, Cutts JH (1958) Role of chance observations in chemotherapy: Vinca rosea. Ann NY Acad Sci 76:882–894CrossRefPubMedGoogle Scholar
  4. 4.
    Neuss N, Gorman M, Svoboda GH et al (1959) Vinca alkaloids. III.1 characterization of leurosine and vinca leukoblastine, new alkaloids from Vinca rosea Linn. J Am Chem Soc 81:4754–4755CrossRefGoogle Scholar
  5. 5.
    Svoboda GH, Johnson IS, Gorman M, Neuss N (1962) Current status of research on the alkaloids of Vinca rosea Linn. (Catharanthus roseus G. Don). J Pharm Sci 51:707–720CrossRefPubMedGoogle Scholar
  6. 6.
    Palmer CG, Livengood D, Warren AK, Simpson PJ, Johnson IS (1960) The action of vincaleukoblastine on mitosis in vitro. Exp Cell Res 20:198–201CrossRefPubMedGoogle Scholar
  7. 7.
    Bensch KG, Marantz R, Wisniewski H, Shelanski ML (1969) Induction in vitro of microtubular crystals by vinca alkaloids. Science 165:495–496CrossRefPubMedGoogle Scholar
  8. 8.
    Marantz R, Ventilla M, Shelanski ML (1969) Vinblastine-induced precipitation of microtubule protein. Science 165:498–499CrossRefPubMedGoogle Scholar
  9. 9.
    Owellen RJ, Hartke CA, Dickerson RM, Hains FO (1976) Inhibition of tubulin-microtubule polymerization by drugs of the vinca alkaloid class. Cancer Res 36:1499–1502PubMedGoogle Scholar
  10. 10.
    Tucker RW, Owellen RJ, Harris SB (1977) Correlation of cytotoxicity and mitotic spindle dissolution by vinblastine in mammalian cells. Cancer Res 37:4346–4351PubMedGoogle Scholar
  11. 11.
    Mangeney P, Andriamialisoa RZ, Lallemand JY, Langlois N, Langlois Y, Potier P (1979) 5′-Noranhydrovinblastine. Prototype of a new class of vinblastine derivatives. Tetrahedron 35:2175–2179CrossRefGoogle Scholar
  12. 12.
    Binet S, Fellous A, Lataste H, Krikorian A, Couzinier JP, Meniniger V (1989) In situ analysis of the action of Navelbine on microtubules using immunofluorescence. Semin Oncol 16(Suppl 4):5–8PubMedGoogle Scholar
  13. 13.
    Leveque D, Quoix E, Dumont P, Massard G, Hentz JG, Charloux A, Jehl F (1993) Pulmonary distribution of vinorelbine in patients with non small cell lung cancer. Cancer Chemother Pharmacol 33:176–178CrossRefPubMedGoogle Scholar
  14. 14.
    The Elderly Lung Cancer Vinorelbine Italian Study (ELVIS) Group (1999) Effects of vinorelbine on quality of life and survival of elderly patients with advanced non-small cell lung cancer. J Natl Cancer Inst 91:66–72CrossRefGoogle Scholar
  15. 15.
    Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798CrossRefGoogle Scholar
  16. 16.
    Bai RL, Paull KD, Herald CL, Malspeis L, Pettit GR, Hamel E (1991) Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 266:15882–15889PubMedGoogle Scholar
  17. 17.
    Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y et al (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114:3162–3164CrossRefGoogle Scholar
  18. 18.
    Stamos DP, Sean SC, Kishi Y (1997) New synthetic route to the C.14-C.38 segment of halichondrins. J Org Chem 62:7552–7553CrossRefGoogle Scholar
  19. 19.
    Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S et al (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61:1013–1021PubMedGoogle Scholar
  20. 20.
    Twelves C, Cortes J, Vahdat LT, Wanders J, Akerele C, Kaufman PA (2010) Phase III trials of eribulin mesylate (E7389) in extensively pretreated patients with locally recurrent or metastatic breast cancer. Clin Breast Cancer 10:160–163CrossRefPubMedGoogle Scholar
  21. 21.
    Wall ME, Wani MC (1967) Recent progress in plant anti-tumor agents. 153rd National Meeting of the American Chemical SocietyGoogle Scholar
  22. 22.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents, VI: the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefPubMedGoogle Scholar
  23. 23.
    Fuchs DA, Johnson RK (1978) Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison. Cancer Treat Rep 62:1219–1222PubMedGoogle Scholar
  24. 24.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 22:665–667CrossRefGoogle Scholar
  25. 25.
    McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC (1989) Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 111:273–279Google Scholar
  26. 26.
    Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  27. 27.
    Senilh V, Blechert S, Colin M, Guenard D, Picot F, Potier P, Varenne P (1984) Mise en evidence de nouveaux analogues du taxol, extraits de Taxus baccata. J Nat Prod 47:131–137Google Scholar
  28. 28.
    Mangatal L, Adeline MT, Guenard D, Gueritte-Voegelein F, Potier P (1989) Application of the vicinal oxyamination reaction with asymmetric induction to the hemisynthesis of taxol and analogues. Tetrahedron 45:4177–4190CrossRefGoogle Scholar
  29. 29.
    Lavelle F, Fizames C, Gueritte-Voegelein F, Guenard D, Potier P (1989) Experimental properties of RP 56976, a taxol derivative. Proc Am Assoc Cancer Res 30:2254Google Scholar
  30. 30.
    Lockhart AC, Tirona RG, Kim RB (2003) Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol Cancer Ther 2:685–698CrossRefPubMedGoogle Scholar
  31. 31.
    Sanofi-aventis (2000) XRP6258 investigator’s brochure. Antony (France): Sanofi-aventisGoogle Scholar
  32. 32.
    De Bono JS et al (2010) Cabazitaxel or mitoxantrone with prednisone in patients with metastatic castration resistant prostate cancer (mCRPC) previously treated with docetaxel: final results of a multinational phase III trial (TROPIC). J Clin Oncol 28(Suppl 15):4508Google Scholar
  33. 33.
    Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333PubMedGoogle Scholar
  34. 34.
    Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7:1429–1437PubMedGoogle Scholar
  35. 35.
    Vahdat LT et al (2007) Phase III trial of ixabepilone plus capecitabine compared to capecitabine alone in patients with metastatic breast cancer (MBC) previously treated or resistant to an anthracycline and resistant to taxanes. J Clin Oncol 25:18SGoogle Scholar
  36. 36.
    King LS, Sullivan M (1946) The similarity of the effect of podophyllin and colchicine and their use in the treatment of condylomata acuminata. Science 104:244–245CrossRefGoogle Scholar
  37. 37.
    Emmenegger H, Stahelin H, Rutschmann J, Renz J, von Wartburg A (1961) On the chemistry and pharmacology of podophyllum glucoside and its derivatives. Drug Res 11:327–333Google Scholar
  38. 38.
    Stahelin H (1970) 4′-Demethyl-epipodophyllotoxin thenylidene glucoside (VM 26), a podophyllum compound with a new mechanism of action. Eur J Cancer 6:303–311CrossRefPubMedGoogle Scholar
  39. 39.
    Keller-Julsen C, Kuhn M, von Wartburg A, Stahelin H (1971) Mitosis-inhibiting natural products. 24. Synthesis and antimitotic activity of glycosidic lignan derivatives related to podophyllotoxin. J Med Chem 14:936–940CrossRefGoogle Scholar
  40. 40.
    Loike JD, Horwitz SB (1976) Effects of podophyllotoxin and VP-16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry 15:5435–5443CrossRefPubMedGoogle Scholar
  41. 41.
    Ross W, Rowe T, Glisson B, Yalowich J, Liu L (1984) Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res 44:5857–5860PubMedGoogle Scholar
  42. 42.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890Google Scholar
  43. 43.
    Hsiang YH, Hertzberg R, Hecht S, Liu L (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878PubMedGoogle Scholar
  44. 44.
    Kingsbury WD, Boehm JC, Jakas DR et al (1991) Synthesis of water-soluble (aminoalkyl)camptothecin analogs: inhibition of topoisomerase I and antitumor activity. J Med Chem 34:98–107CrossRefPubMedGoogle Scholar
  45. 45.
    Sawada S, Okajima S, Aiyama R et al (1991) Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem Pharm Bull 39:1446–1450CrossRefPubMedGoogle Scholar
  46. 46.
    No Authors Listed (1976) Cephalotaxine esters in the treatment of acute leukemia. A preliminary clinical assessment. Chin Med J 2:263–272Google Scholar
  47. 47.
    Powell RG, Weisleder D, Smith CR Jr (1972) Antitumor alkaloids for Cephalataxus harringtonia: structure and activity. J Pharm Sci 61:1227–1230CrossRefPubMedGoogle Scholar
  48. 48.
    Huang MT (1975) Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol Pharmacol 11:511–519PubMedGoogle Scholar
  49. 49.
    No Authors Listed (1977) Harringtonine in acute leukemias. Clinical analysis of 31 cases. Chin Med J 3:319–324Google Scholar
  50. 50.
    Legha SS, Keating M, Picket S, Ajani JA, Ewer M, Bodey GP (1984) Phase I clinical investigation of homoharringtonine. Cancer Treat Rep 68:1085–1091PubMedGoogle Scholar
  51. 51.
    Chen R, Gandhi V, Plunkett WA (2006) Sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia. Cancer Res 66:10959–10966CrossRefPubMedGoogle Scholar
  52. 52.
    Tang R, Faussat AM, Majdak P, Marzac C, Dubrulle S, Marjanovic Z, Legrand O, Marie JP (2006) Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol Cancer Ther 5:723–731CrossRefPubMedGoogle Scholar
  53. 53.
    Cortes J, Khoury HJ, Corm S et al (2008) Safety and efficacy of subcutaneous (SC) omacetaxine mepesuccinate in imatinib (IM)-resistant chronic myeloid leukemia (CML) patients with the T315I mutation-results of an ongoing multicenter phase 2/3 study. Blood (ASH Annual Meeting Abstracts) 112:3239Google Scholar
  54. 54.
    Manaker RA, Gregory FJ, Vining LC, Waksman SA (1955) Actinomycin: III. The properties of a new actinomycin. Antibiotics Ann 1954–1955:853–857Google Scholar
  55. 55.
    Farber S, D’Angio G, Evans A, Mitus A (1960) Clinical studies of actinomycin D with special reference to Wilms’ tumor in children. Ann NY Acad Sci 89:421–425CrossRefPubMedGoogle Scholar
  56. 56.
    Sobell HM, Jain SC (1972) Stereochemistry of actinomycin binding to DNA: II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mole Biol 68:21–28CrossRefGoogle Scholar
  57. 57.
    Ross WE, Bradley MO (1981) DNA double-stranded breaks in mammalian cells after exposure to intercalating agents. Biochem Biophys Acta 654:129–134PubMedGoogle Scholar
  58. 58.
    Grelin A, Spella C, Di Marco A, Canevazzi G (1963) Descrizione e classificazione di un attionamicette (Streptomyces Peucetius sp nova) produltore di un sostanza ad attivite antitumorale; La daunomicina. Giorn Microbio 11:109–118Google Scholar
  59. 59.
    Dubost M, Gauter P, Maral R et al (1963) Un nouvel antibiotique a proprieties cytostatique. La rubidomycine. CR Acad Sci Paris 257:1813–1815Google Scholar
  60. 60.
    Pigram WJ, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nature New Biol 235:17–19CrossRefPubMedGoogle Scholar
  61. 61.
    Tewey KM, Rowe TC, Yang L et al (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466–468CrossRefPubMedGoogle Scholar
  62. 62.
    Jacquillat C, Tanzer J, Boiron M et al (1966) Rubidomycin: a new agent active in the treatment of acute lymphoblastic leukemia. Lancet 288:27–28CrossRefGoogle Scholar
  63. 63.
    Boiron M, Jacquillat C, Weil M et al (1969) Daunorubicin in the treatment of acute myelocytic leukemia. Lancet 293:330–333CrossRefGoogle Scholar
  64. 64.
    Arcamone F, Cassinelli G, Fantini G et al (1969) Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 11:1101–1110CrossRefPubMedGoogle Scholar
  65. 65.
    Di Marco A, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother Rep 53:33–37PubMedGoogle Scholar
  66. 66.
    Bonadonna G, Monfardini S, DeLena M, Fossati-Bellani F (1969) Clinical evaluation of Adriamycin, a new antitumor antibiotic. Br Med J 3:503–506CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Arcamone F, Penco S, Vigevani A et al (1975) Synthesis and antitumor properties of new glycosides of daunomycinone and adriamycinone. J Med Chem 18:703–707CrossRefPubMedGoogle Scholar
  68. 68.
    Arcamone F, Bernardi L, Giardino P et al (1976) Synthesis and antitumor activity of 4-demethoxydaunorubicin, 4-demethoxy-7,9-diepidaunorubicin, and their beta anomers. Cancer Treat Rep 60:829–834PubMedGoogle Scholar
  69. 69.
    Zee-Cheng RKY, Cheng CC (1978) Antineoplastic agents. Structure-activity relationship study of bis(substituted aminoalkylamino)anthraquinones. J Med Chem 21:291–294CrossRefPubMedGoogle Scholar
  70. 70.
    Savaraj N, Lu K, Manuel V, Loo TL (1982) Pharmacology of mitoxantrone in cancer patients. Cancer Chemother Pharmacol 8:113–117CrossRefPubMedGoogle Scholar
  71. 71.
    Crespi MD, Ivanier SE, Genovese J, Baldi A (1986) Mitoxantrone affects topoisomerase activities in human breast cancer cells. Biochem Biophys Res Commun 136:521–528CrossRefPubMedGoogle Scholar
  72. 72.
    Israel M, Tinter SK, Lazarus H, Brown B, Modest EJ (1974) Adriamycin derivatives: preparation and antitumor evaluation. Abstracts. 11th Intern Cancer Congress 4:752–753Google Scholar
  73. 73.
    Israel M, Modest EJ, Frei E III (1975) N-Trifluoroacetyladriamycin-14-valerate, an analog with greater experimental antitumor activity and less toxicity than Adriamycin. Cancer Res 35:1365–1368PubMedGoogle Scholar
  74. 74.
    Markman M, Homesley H, Norberts DA et al (1996) Phase I trial of intraperitoneal AD 32 in gynecologic malignancies. Gynecol Onco 61:90–93CrossRefGoogle Scholar
  75. 75.
    Grundy WE, Goldstein AW, Rickher JC, Hanes ME, Warren HB, Sylvester JC (1953) Aureolic acid, a new antibiotic. I Microbiological studies. Antimicrob Chemother 3:1215–1221Google Scholar
  76. 76.
    Rao KV, Cullen WP, Sobin BA (1962) A new antibiotic with antitumor properties. Antibiot Chemother 12:182–186Google Scholar
  77. 77.
    Brown IH, Kennedy BJ (1965) Mithramycin in the treatment of disseminated testicular neoplasma. New Engl J Med 272:111–118CrossRefPubMedGoogle Scholar
  78. 78.
    Curreri AR, Ansfield FJ (1960) Mithramycin-human toxicology and preliminary therapeutic investigations. Cancer Chemother Rep 8:18–22PubMedGoogle Scholar
  79. 79.
    Maeda K, Kosaka H, Yagishita K, Umezawa H (1956) A new antibiotic, phleomycin. J Antibiot 9:82–85PubMedGoogle Scholar
  80. 80.
    Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics bleomycins A and B. J Antibiot 19:200–209PubMedGoogle Scholar
  81. 81.
    Umezawa H, Takeuchi T, Hori S, Sawa T, Ishizuka M, Ichikawa T, Komai T (1972) Studies on the mechanism of antitumor effect of bleomycin on squamous cell carcinoma. J Antibiot 25:409–420CrossRefPubMedGoogle Scholar
  82. 82.
    Takita T, Umezawa Y, Saito S, Morishima H, Naganawa H, Umezawa H, Tsuchiya T et al (1982) Total synthesis of bleomycin A2. Tetrahedron Lett 23:521–524CrossRefGoogle Scholar
  83. 83.
    D’Andrea AD, Haseltine WA (1978) Sequence specific cleavage of DNA by the antitumour antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci 75:3608–3612CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kyu-Won Kim
    • 1
  • Jae Kyung Roh
    • 2
  • Hee-Jun Wee
    • 1
  • Chan Kim
    • 3
  1. 1.College of PharmacySeoul National UniversitySeoulKorea (Republic of)
  2. 2.Department of Internal MedicineYonsei University College of MedicineSeoulKorea (Republic of)
  3. 3.Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea (Republic of)

Personalised recommendations