Advertisement

Preparation of Porous Graphene-Based Nanomaterials for Electrochemical Energy Storage Devices

  • Yuanzhe Piao
Chapter
Part of the KAIST Research Series book series (KAISTRS)

Abstract

Graphene-based nanostructures exhibit good mechanical strength, high porosity, outstanding electrical conductivity, and excellent thermal and chemical stability, which in addition to its low cost, versatile functionalization chemistry, and relative ease of large-scale preparation make it ideally suited to serve as a key component for the development of new electrode materials. Recently, a wide variety of methods have been developed for the formation of porous graphene architectures to further improve the performances. Porous graphene provides abundant pathways for rapid ion diffusion and high accessible surface area. In this chapter, the recent continued breakthroughs in the preparation of porous graphene-based nanoarchitectures as well as their applications as electrode materials for electrochemical energy storage devices are introduced.

Keywords

Graphene Porous Electrochemistry Electrochemical energy storage Nanostructures Lithium-ion rechargeable batteries Supercapacitors 

Notes

Acknowledgments

This work was supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT and Future Planning, Republic of Korea, as a Global Frontier Project.

References

  1. 1.
    Bi H, Yin K, Xie X, Zhou Y, Wan N, Xu F, Banhart F, Sun L, Ruoff RS (2012) Low temperature casting of graphene with high compressive strength. Adv Mater 24:5124CrossRefGoogle Scholar
  2. 2.
    Bo X, Guo L (2013) Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts. Electrochim Acta 90:283CrossRefGoogle Scholar
  3. 3.
    Bolotin KI, Ghahari F, Shulman MD, Stormer HL, Kim P (2009) Observation of the fractional quantum hall effect in graphene. Nature 462:196CrossRefGoogle Scholar
  4. 4.
    Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163CrossRefGoogle Scholar
  5. 5.
    Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9:3433CrossRefGoogle Scholar
  6. 6.
    Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Ed 53:1404CrossRefGoogle Scholar
  7. 7.
    Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679CrossRefGoogle Scholar
  8. 8.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424CrossRefGoogle Scholar
  9. 9.
    Chen CM, Zhang Q, Huang C-H, Zhao X-C, Zhang B-S, Kong Q-Q, Wang M-Z, Yang Y-G, Cai R, Su DS (2012) Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem Comm 48:7149CrossRefGoogle Scholar
  10. 10.
    Chen K, Chen L, Chen Y, Bai H, Li L (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968CrossRefGoogle Scholar
  11. 11.
    Chen S, Duan J, Tang Y, Qiao SZ (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem Eur J 19:7118CrossRefGoogle Scholar
  12. 12.
    Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y (2014) Freestanding graphene paper supported three-dimensional porous graphene—polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6:16312CrossRefGoogle Scholar
  13. 13.
    Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D Macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020CrossRefGoogle Scholar
  14. 14.
    Dai L (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31CrossRefGoogle Scholar
  15. 15.
    Deng W, Ji X, Gómez-Mingot M, Lu F, Chen Q, Banks CE (2012) Graphene electrochemical supercapacitors: the influence of oxygen functional groups. Chem Commun 48:2770CrossRefGoogle Scholar
  16. 16.
    Dong X, Cao Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364CrossRefGoogle Scholar
  17. 17.
    Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133:6122CrossRefGoogle Scholar
  18. 18.
    Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699CrossRefGoogle Scholar
  19. 19.
    Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F (2013) Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60:538CrossRefGoogle Scholar
  20. 20.
    Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135:1524CrossRefGoogle Scholar
  21. 21.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530CrossRefGoogle Scholar
  22. 22.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183CrossRefGoogle Scholar
  23. 23.
    Ha J, Park S-K, Yu S-H, Jin A, Jang B, Bong S, Kim I, Sung Y-E, Piao Y (2013) A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 5:8647CrossRefGoogle Scholar
  24. 24.
    Han TH, Huang YK, Tan ATL, Dravid VP, Huang J (2011) Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc 133:15264CrossRefGoogle Scholar
  25. 25.
    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174CrossRefGoogle Scholar
  26. 26.
    Hsieh C-T, Lin C-Y, Chen Y-F, Lin J-S (2013) Synthesis of ZnO@graphene composites as anode materials for lithium ion batteries. Electrochim Acta 111:359CrossRefGoogle Scholar
  27. 27.
    Huang X, Qian K, Yang J, Zhang J, Li L, Yu C, Zhao D (2012) Functional nanoporous graphene foams with controlled pore sizes. Adv Mater 24:4419CrossRefGoogle Scholar
  28. 28.
    Huang X, Yu H, Chen J, Lu Z, Yazami R, Hng HH (2014) Ultrahigh rate capabilities of lithium-ion batteries from 3d ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Adv Mater 26:1296CrossRefGoogle Scholar
  29. 29.
    Jang B, Park M, Chae OB, Park S, Kim Y, Oh SM, Piao Y, Hyeon T (2012) Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J Am Chem Soc 134:15010CrossRefGoogle Scholar
  30. 30.
    Jang B, Choi E, Piao Y (2013) Preparation of well-dispersed Pt nanoparticles on solvothermal graphene and their enhanced electrochemical properties. Mater Res Bull 48:834CrossRefGoogle Scholar
  31. 31.
    Jang B, Chae OB, Park S-K, Ha J, Oh SM, Na HB, Piao Y (2013) Solventless synthesis of an iron-oxide/graphene nanocomposite and its application as an anode in high-rate Li-ion batteries. J Mater Chem A 1:15442CrossRefGoogle Scholar
  32. 32.
    Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664CrossRefGoogle Scholar
  33. 33.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706CrossRefGoogle Scholar
  34. 34.
    Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7:6899CrossRefGoogle Scholar
  35. 35.
    Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66CrossRefGoogle Scholar
  36. 36.
    Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170CrossRefGoogle Scholar
  37. 37.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229CrossRefGoogle Scholar
  38. 38.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312CrossRefGoogle Scholar
  39. 39.
    Li X, Zhao T, Wang K, Yang Y, Wei J, Kang F, Wu D, Zhu H (2011) Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27:12164CrossRefGoogle Scholar
  40. 40.
    Li L, Guo Z, Du A, Liu H (2012) Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. J Mater Chem 22:3600CrossRefGoogle Scholar
  41. 41.
    Li L, Seng KH, Chen Z, Liu H, Nevirkovets IP, Guo Z (2013) Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim Acta 87:801CrossRefGoogle Scholar
  42. 42.
    Liang MH, Zhi LJ (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871CrossRefGoogle Scholar
  43. 43.
    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863CrossRefGoogle Scholar
  44. 44.
    Luo B, Liu S, Zhi L (2012) Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8:630CrossRefGoogle Scholar
  45. 45.
    Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13:6136CrossRefGoogle Scholar
  46. 46.
    Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, Tu JP (2011) CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta 56:2306CrossRefGoogle Scholar
  47. 47.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651CrossRefGoogle Scholar
  48. 48.
    Nam I, Kim ND, Kim G-P, Park J, Yi J (2013) One step preparation of Mn3O4/graphene composites for use as an anode in Li ion batteries. J Power Sources 244:56–62Google Scholar
  49. 49.
    Naoi K, Naoi W, Aoyagi S, Miyamoto J, Kamino T (1075) New generation “nanohybrid supercapacitor”. Acc Chem Res 2012:46Google Scholar
  50. 50.
    Ning G, Fan Z, Wang G, Gao J, Qian W, Wei F (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Comm 47:5976CrossRefGoogle Scholar
  51. 51.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRefGoogle Scholar
  52. 52.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197CrossRefGoogle Scholar
  53. 53.
    Park S-K, Yu S-H, Pinna N, Woo S, Jang B, Chung YH, Cho YH, Sung Y-E, Piao Y (2012) A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries. J Mater Chem 22:2520CrossRefGoogle Scholar
  54. 54.
    Park S-K, Jin A, Yu S-H, Ha J, Jang B, Bong S, Woo S, Sung Y-E, Piao Y (2014) In situ hydrothermal synthesis of Mn3O4 nanoparticles onnitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452CrossRefGoogle Scholar
  55. 55.
    Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241CrossRefGoogle Scholar
  56. 56.
    Qiu H, Dong X, Sana B, Peng T, Paramelle D, Chen P, Lim S, Appl ACS (2013) Mater Inter 5:782CrossRefGoogle Scholar
  57. 57.
    Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanospace engineering of KOH activated carbon. Nanotechnology 23:015401CrossRefGoogle Scholar
  58. 58.
    Segal M (2009) Selling graphene by the ton. Nat Nanotechnol 4:612CrossRefGoogle Scholar
  59. 59.
    Shao Y, Wang H, Zhang Q, Li Y (2013) High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J Mater Chem C 1:1245CrossRefGoogle Scholar
  60. 60.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845CrossRefGoogle Scholar
  61. 61.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Science 343:1210CrossRefGoogle Scholar
  62. 62.
    Song Z, Zhang Y, Liu W, Zhang S, Liu G, Chen H, Qiu J (2013) Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors. Electrochim Acta 112:120CrossRefGoogle Scholar
  63. 63.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282CrossRefGoogle Scholar
  64. 64.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefGoogle Scholar
  65. 65.
    Su F-Y, He Y-B, Li B, Chen X-C, You C-H, Wei W, Lv W, Yang Q-H, Kang F (2012) Could graphene construct an effective conducting network in a high-power lithium ion battery. Nano Energy 1:429CrossRefGoogle Scholar
  66. 66.
    Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180CrossRefGoogle Scholar
  67. 67.
    Wang G, Jia L-T, Zhu Y, Hou B, Li D-B, Sun Y-H (2012) Novel preparation of nitrogen-doped graphene in various forms with aqueous ammonia under mild conditions. RSC Adv 2:11249CrossRefGoogle Scholar
  68. 68.
    Wang Z-L, Xu D, Wang H-G, Wu Z, Zhang X-B (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422CrossRefGoogle Scholar
  69. 69.
    Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D, Bando Y (2013) Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 4:2905Google Scholar
  70. 70.
    Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D Graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909CrossRefGoogle Scholar
  71. 71.
    Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835CrossRefGoogle Scholar
  72. 72.
    Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532CrossRefGoogle Scholar
  73. 73.
    Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z (2012) A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J Mater Chem 22:7724CrossRefGoogle Scholar
  74. 74.
    Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324CrossRefGoogle Scholar
  75. 75.
    Xu Z, Li Z, Holt CMB, Tan X, Wang H, Amirkhiz BS, Stephenson T, Mitlin D (2012) electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J Phys Chem Lett 3:2928CrossRefGoogle Scholar
  76. 76.
    Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Graphene-based electrodes for electrochemical energy Storage. Energy Environ Sci 6:1388CrossRefGoogle Scholar
  77. 77.
    Yadav P, Banerjee A, Unni S, Jog J, Kurungot S, Ogale S (2012) A 3D hexaporous carbon assembled from single-layer graphene as high performance supercapacitor. Chemsuschem 5:2159CrossRefGoogle Scholar
  78. 78.
    Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8:4720CrossRefGoogle Scholar
  79. 79.
    Yang M, Gao Q (2011) LiFePO4/C composite cathode material with a continuous porous carbon network for high power lithium-ion battery. J Alloys Compd 509:3690CrossRefGoogle Scholar
  80. 80.
    Yang SB, Feng XL, Wang L, Tang K, Maier J, Müllen K (2010) Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed 49:4795CrossRefGoogle Scholar
  81. 81.
    Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534CrossRefGoogle Scholar
  82. 82.
    Ye J, Zhang J, Wang F, Su Q, Du G (2013) One-pot synthesis of Fe2O3/graphene and its lithium-storage performance. Electrochim Acta 113:212–217Google Scholar
  83. 83.
    Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277CrossRefGoogle Scholar
  84. 84.
    Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y (2013) Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale 5:3457CrossRefGoogle Scholar
  85. 85.
    Yu S-H, Conte DE, Baek S, Lee D-C, Park S-K, Lee KJ, Piao Y, Sung Y-E, Pinna N (2013) Structure-properties relationship in iron oxide-reduced graphene oxide nanostructures for Li-ion batteries. Adv Funct Mater 23:4293CrossRefGoogle Scholar
  86. 86.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (1806) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 2012:12Google Scholar
  87. 87.
    Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A, Chen Y (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408Google Scholar
  88. 88.
    Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5:8739CrossRefGoogle Scholar
  89. 89.
    Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290CrossRefGoogle Scholar
  90. 90.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537CrossRefGoogle Scholar
  91. 91.
    Zhu J, Yang D, Rui X, Sim D, Yu H, Hng HH, Hoster HE, Ajayan PM, Yan Q (2013) Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance. Small 9:3390CrossRefGoogle Scholar
  92. 92.
    Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Graduate School of Convergence Science and TechnologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations