Advertisement

Reconfigurable Photovoltaic Array Systems for Adaptive and Fault-Tolerant Energy Harvesting

  • Naehyuck Chang
  • Massoud Pedram
  • Hyung Gyu Lee
  • Yanzhi Wang
  • Younghyun Kim
Chapter
Part of the KAIST Research Series book series (KAISTRS)

Abstract

This chapter introduces a reconfigurable photovoltaic (PV) cell array for adaptive and fault-tolerant energy harvesting in view of component modeling, architectures, properties, and reconfigurable algorithms for partial shading and fault tolerance. On top of traditional PV cell array-based energy harvesting research, the dynamically reconfigurable PV cell array gives additional significant benefits in both efficiency and cost. This is a representative example of how electronics design automation contributes to various problems in other domains.

Keywords

Photovoltaic system Solar cell Reconfiguration Efficiency Fault tolerance 

Notes

Acknowledgments

This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.

References

  1. 1.
    Lee W, Kim Y, Wang Y, Chang N, Pedram M (2011) Versatile high-fidelity photovoltaic module emulation system. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED)Google Scholar
  2. 2.
    Choi Y, Chang N, Kim T (2007) DC–DC converter-aware power management for low-power embedded systems. IEEE Trans Comput Aided Des Integr Circ Syst 26(8):1367–1381CrossRefGoogle Scholar
  3. 3.
    Wang Y, Kim Y, Xie Q, Chang N, Pedram M (2011) Charge migration efficiency optimization in hybrid electrical energy storage (HEES) systems. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED)Google Scholar
  4. 4.
    Hohm DP, Ropp ME (2003) Comparative study of maximum power point tracking algorithms. Prog Photovoltaics Res Appl 11(1):47–62CrossRefGoogle Scholar
  5. 5.
    Esram T, Chapman P (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energ Convers 22(2):439–449CrossRefGoogle Scholar
  6. 6.
    Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energ 4(1):89–98CrossRefGoogle Scholar
  7. 7.
    Kim Y, Wang Y, Chang N, Pedram M (2010) Maximum power transfer tracking for a photovoltaic-supercapacitor energy system. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 307–312Google Scholar
  8. 8.
    Shao H, Tsui C-Y, Ki W-H (2009) The design of a micro power management system for applications using photovoltaic cells with the maximum output power control. IEEE Trans Very Large Scale Integr VLSI Syst 17(8):1138–1142CrossRefGoogle Scholar
  9. 9.
    Shao H, Tsui C-Y, Ki W-H (2010) Maximizing the harvested energy for micro-power applications through efficient MPPT and PMU design. In: Proceedings of the Asia and South Pacific design automation conference (ASP-DAC), pp 75–80Google Scholar
  10. 10.
    Lu C, Park SP, Raghunathan V, Roy K (2010) Efficient power conversion for ultra low voltage micro scale energy transducers. In: Proceedings of the conference on design, automation and test in Europe (DATE), pp 1602–1607Google Scholar
  11. 11.
    Kim S, No K-S, Chou P (2011) Design and performance analysis of supercapacitor charging circuits for wireless sensor nodes. IEEE J Emerg Sel Top Circ Syst (JETCAS) 1(3):391–402CrossRefGoogle Scholar
  12. 12.
    Kim S, Chou P (2012) Size and topology optimization for supercapacitor-based sub-watt energy harvesters. IEEE Trans Power Electron 28(4):2068–2080Google Scholar
  13. 13.
    Mungan ES, Lu C, Raghunathan V, Roy K (2012) Modeling, design and cross-layer optimization of polysilicon solar cell based micro-scale energy harvesting systems. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 123–128Google Scholar
  14. 14.
    Sulaiman SA, Hussain H, Leh NN, Razali MSI (2011) Effects of dust on the performance of PV panels. World Acad Sci Eng Technol 58:588–593Google Scholar
  15. 15.
    Swaleh MS, Green MA (1982) Effect of shunt resistance and bypass diodes on the shadow tolerance of solar cell modules. Sol Cells 5:183–198Google Scholar
  16. 16.
    Patel H, Agarwal V (2008) Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Industr Electron 55:1689–1698Google Scholar
  17. 17.
    Nguyen TL, Low K (2010) A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans Industr Electron 57(10):345634Google Scholar
  18. 18.
    Nguyen D, Lehman B (2008) An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Trans Industr Electron 55(7):2644–2654Google Scholar
  19. 19.
    Velasco-Quesada G (2009) Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems. IEEE Trans Industr Electron 56(11):4319–4331Google Scholar
  20. 20.
    Chaaban MA (2010) Adaptive photovoltaic system. In: Proceedings of the annual conference on IEEE industrial electronics society (IECON)Google Scholar
  21. 21.
    Kim Y, Park S, Wang Y, Xie Q, Chang N, Poncino M, Pedram M (2011) Balanced reconfiguration of storage banks in a hybrid electrical energy storage system. In: Proceedings of the international conference on computer-aided design (ICCAD), pp 624–631Google Scholar
  22. 22.
    Wang Y, Lin X, Kim Y, Chang N, Pedram M (2014) Architecture and control algorithms for combating partial shading in photovoltaic systems. IEEE Trans Comput Aided Des 33(4):917–930Google Scholar
  23. 23.
    Lin X, Wang Y, Pedram M, Kim J, Chang N (2014) Designing fault-tolerant photovoltaic systems. IEEE Des Test 31(3):76–84CrossRefGoogle Scholar
  24. 24.
    Wang C, Chang N, Kim Y, Park S, Liu Y, Lee HG, Luo R, Yang H (2014) Storage-less and converter-less maximum power point tracking of photovoltaic cells for a nonvolatile microprocessor. In: Proceedings of the Asia and South Pacific design automation conference (ASP-DAC), pp 379–384Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Naehyuck Chang
    • 1
  • Massoud Pedram
    • 2
  • Hyung Gyu Lee
    • 3
  • Yanzhi Wang
    • 2
  • Younghyun Kim
    • 4
  1. 1.Korea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.Daegu UniversityDaeguSouth Korea
  4. 4.Purdue UniversityWest LafayetteUSA

Personalised recommendations