Energy Harvesting from the Human Body and Powering up Implant Devices

  • Ross Kerley
  • Xiucheng Huang
  • Dong Sam HaEmail author
Part of the KAIST Research Series book series (KAISTRS)


This article reviews research activities at the system level on (i) energy harvesting with wearable devices from the human body and (ii) powering up implant devices. The first part reviews wearable devices to harvest energy from the human body for biomedical and portable devices. Harvestable human body energy sources can be classified into two categories, voluntary and involuntary. Voluntary sources are capable of providing high power levels, up to several watts, but are only available when the wearer is active. Involuntary sources are constantly available, but provide much smaller amounts of energy, of the order of milliwatts. The latter part of the article reviews research activities to power up devices implanted in the human body. There are two approaches to power up implant devices. The first approach is to harvest energy from the body or ambient sources. The energy sources are essentially limited to kinetic energy of the body, body heat, and solar. The second approach is to transmit power to implant devices wirelessly. The power level available to implanted devices through harvesting or power transmission is small, often of the order of microwatts.


Energy harvesting Human body Wearable Implant Power transmission 



This work is supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT and Future Planning as the Global Frontier Project.


  1. 1.
    Wei X, Liu J (2008) Power sources and electrical recharging strategies for implantable medical devices. Front Energy Power Eng Chin 2:1–13CrossRefGoogle Scholar
  2. 2.
    Verma NK, Singla P, Roy A (2012) Energy harvesting by foot-propelled battery charger using shoe-model. Adv Mater Res 488–489:1268–1273CrossRefGoogle Scholar
  3. 3.
    Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3):30–42CrossRefGoogle Scholar
  4. 4.
    Orecchini G, Yang L, Tentzeris MM, Roselli L (2011) Wearable battery-free active paper printed RFID tag with human-energy scavenger. In: Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, pp 1–4Google Scholar
  5. 5.
    Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Second International Symposium on Wearable Computers, Digest of Papers, pp 132–139Google Scholar
  6. 6.
    Zeng P, Chen H, Yang Z, Khaligh A (2011) Unconventional wearable energy harvesting from human horizontal foot motion. In: Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, pp 258–264Google Scholar
  7. 7.
    Stamenkovic I, Milivojevic N, Zheng C, Khaligh A (2010) Three phase linear permanent magnet energy scavenger based on foot horizontal motion. In: Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, pp 2245–2250Google Scholar
  8. 8.
    Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD (2008) Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319(5864):807–810CrossRefGoogle Scholar
  9. 9.
    Luciano V, Sardini E, Serpelloni M, Baronio G (2012) Analysis of an electromechanical generator implanted in a human total knee prosthesis. In: Sensors Applications Symposium (SAS), 2012 IEEE, pp 1–5Google Scholar
  10. 10.
    Luciano V, Sardini E, Serpelloni M (2014) An Electromechanical generator implanted in human total knee prosthesis. In: Baldini F, D’Amico A, Natale CD, Siciliano P, Seeber R, Stefano LD, Bizzarri R, Andò B (eds) Sensors. Springer, New York, pp 25–30Google Scholar
  11. 11.
    Pozzi M, Zhu M (2011) Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation. Smart Mater Struct 20(5):055007CrossRefGoogle Scholar
  12. 12.
    Lai H, Tan CA, Xu Y (2011) Dielectric elastomer energy harvesting and its application to human walking. ASME Conference Proceedings 2011(54884):601–607Google Scholar
  13. 13.
    Bowers BJ, Arnold DP (2009) Spherical, rolling magnet generators for passive energy harvesting from human motion. J Micromech Microeng 19(9):094008CrossRefGoogle Scholar
  14. 14.
    Sun K, Liu GQ, Xu XY (2011) No-Load Analysis of Permanent Magnet Spring Nonlinear Resonant Generator for Human Motion Energy Harvesting. Appl Mech Mater 130–134:2778–2782CrossRefGoogle Scholar
  15. 15.
    Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators, A 147(1):248–253CrossRefGoogle Scholar
  16. 16.
    Fujita T, Onishi T, Fujii K, Kanda K, Maenaka K, Higuchi K (2012) Evaluation of the human vibration for autonomous power source. In: World Automation Congress (WAC), pp 1–4Google Scholar
  17. 17.
    Yang B, Yun K-S (2011) Efficient energy harvesting from human motion using wearable piezoelectric shell structures. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pp 2646–2649Google Scholar
  18. 18.
    Renaud M, Sterken T, Fiorini P, Puers R, Baert K, van Hoof C (2005) Scavenging energy from human body: design of a piezoelectric transducer. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers, TRANSDUCERS ’05, vol 1, pp 784–787Google Scholar
  19. 19.
    Renaud M, Fiorini P, van Schaijk R, van Hoof C (2009) Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct 18(3):035001CrossRefGoogle Scholar
  20. 20.
    Yang R, Qin Y, Li C, Zhu G, Wang ZL (2009) Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9(3):1201–1205CrossRefGoogle Scholar
  21. 21.
    Padasdao B, Boric-Lubecke O (2011) Respiratory rate detection using a wearable electromagnetic generator. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 3217–3220Google Scholar
  22. 22.
    Shahhaidar E, Boric-Lubecke O, Ghorbani R, Wolfe M (2011) Electromagnetic generator: as respiratory effort energy harvester. In: IEEE Power and Energy Conference at Illinois (PECI), pp 1–4Google Scholar
  23. 23.
    Wang Z, Leonov V, Fiorini P, Van Hoof C (2007) Micromachined thermopiles for energy scavenging on human body. In: Solid-State Sensors, Actuators and Microsystems Conference, 2007, TRANSDUCERS 2007, International, pp 911–914Google Scholar
  24. 24.
    Wang Z, Leonov V, Fiorini P, Van Hoof C (2009) Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens Actuators A 156(1):95–102CrossRefGoogle Scholar
  25. 25.
    Jung S, Lauterbach C, Strasser M, Weber W (2003) Enabling technologies for disappearing electronics in smart textiles. In: IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, vol 1, pp 386–387Google Scholar
  26. 26.
    Jo SE, Kim MK, Kim MS, Kim YJ (2012) Flexible thermoelectric generator for human body heat energy harvesting. Electron Lett 48(16):1013–1015CrossRefGoogle Scholar
  27. 27.
    Koplow M, Chen A, Steingart D, Wright PK, Evans JW (2008) Thick film thermoelectric energy harvesting systems for biomedical applications. In: 5th International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS), pp 322–325Google Scholar
  28. 28.
    Zhang F, Zhang Y, Silver J, Shakhsheer Y, Nagaraju M, Klinefelter A, Pandey J, Boley J, Carlson E, Shrivastava A, Otis B, Calhoun B (2012) A batteryless 19 µW MICS/ISM-band energy harvesting body area sensor node SoC. In: IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, pp 298–300Google Scholar
  29. 29.
    Ramadass YK, Chandrakasan AP (2011) A Battery-Less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J Solid-State Circuits 46(1):333–341CrossRefGoogle Scholar
  30. 30.
    Leonov V (2013) Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens J 13(6):2284–2291CrossRefzbMATHGoogle Scholar
  31. 31.
    Platt SR, Farritor S, Haider H (2005) On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans Mechatronics 10(2):240–252CrossRefGoogle Scholar
  32. 32.
    Platt SR, Farritor S, Garvin K, Haider H (2005) The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Trans Mechatronics 10(4):455–461CrossRefGoogle Scholar
  33. 33.
    Almouahed S, Gouriou M, Hamitiouche C, Stindel E, Roux C (2011) The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking. IEEE Trans Mechatron 16(5):799–807CrossRefGoogle Scholar
  34. 34.
    Almouahed S, Gouriou M, Hamitiouche C, Stindel E, Roux C (2011) Design and evaluation of instrumented smart knee implant. IEEE Trans Biomed Eng 58(4):971–982CrossRefGoogle Scholar
  35. 35.
    Chen H, Liu M, Jia C, Wang Z (2009) Power harvesting using PZT ceramics embedded in orthopedic implants. IEEE Trans Ultrason Ferroelectr Freq Control 56(9):2010–2014CrossRefGoogle Scholar
  36. 36.
    Luciano V, Sardini E, Serpelloni M, Baronio G (2014) An energy harvesting converter to power sensorized total human knee prosthsis. J IOPscience Meas Sci Technol 25(2)Google Scholar
  37. 37.
    Nasiri A, Zabalawi SA, Jeutter DC (2011) A linear permanent magnet generator for powering implanted electronic devices. IEEE Trans Power Electon 26(1):192–199CrossRefGoogle Scholar
  38. 38.
    Morais R, Silva NM, Santos PM, Frias CM, Ferreira JAF, Ramos AM, Simoes JAO, Baptista JMR, Reis MC (2011) Double permanent magnet vibration power generator for smart hip prosthesis. J Sens Actuators Phys 172(1):259–268CrossRefGoogle Scholar
  39. 39.
    Deterre M, Boutaud R, Dalmolin R, Bosseau S, Chaillout JJ, Lefeuvre E, Gergram ED (2011) Energy harvesting system for cardiac implant applications. In: Proceeding of Design, Test, Integration and Packaging of MEMS (DTIP), pp 387–391Google Scholar
  40. 40.
    Deterre M, Lefeuvre E, Zhu Y, Woytasik M, Boutaud B, Molin RD (2014) Micro blood pressure energy harvester for intracardiac pacemaker. J Microelectromech Syst 23(3):651–660CrossRefGoogle Scholar
  41. 41.
    Tashiro R, Kabei N, Katayama K, Tsuboi F, Tsuchiya K (2002) Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. Artif Organs 5:239–245CrossRefGoogle Scholar
  42. 42.
    Potkat JA, Brooks K (2008) An arterial cuff energy scavenger for implanted microsystems. In: Proceedings of Bioinformatics and Biomedical Engineering (ICBBE), pp 1580–1583Google Scholar
  43. 43.
    Lewandowski BE, Kilgore KL, Gustafson KJ (2007) Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Ann Biomed Eng 35(4):631–641CrossRefzbMATHGoogle Scholar
  44. 44.
    Yang Y, Wei X, Liu J (2007) Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D Appl Phys 40:5790–5800CrossRefzbMATHGoogle Scholar
  45. 45.
    Nagel JA, Sieber I, Gengenbach U, Guth H, Bretthauer G, Guthoff RF (2010) Investigation of a thermoelectric power supply for the artificial accommodation system. In: Proceeding of Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp 1–5Google Scholar
  46. 46.
    Kerzenmacher S, Ducre J, Zengerle R, Stetten FV (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources 182(1):1–17CrossRefGoogle Scholar
  47. 47.
    Bandyopadhyay S, Mercier PP, Lysaght AC, Stankovic KM, Chandrakasan AP (2014) A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants. IEEE J Solid-State Circuits 49(12):2812–2824CrossRefGoogle Scholar
  48. 48.
    Ayazian S, Hassibi A (2011) Delivering optical power to subcutaneous implanted devices. In: Proceeding of IEEE Engineering in Medicine and Biology Society (EMBC), pp 2874–2877Google Scholar
  49. 49.
    Ayazian S, Akhavan VA, Soenen E, Hassibi A (2012) A photovoltaic-driven and energy-autonomous CMOS implantable sensor. IEEE Trans Biomed Circuits Syst 6(4):336–343CrossRefGoogle Scholar
  50. 50.
    Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Biomed Circuits Syst 52(12):2605–2613CrossRefGoogle Scholar
  51. 51.
    Lenaerts B, Puers R (2007) An inductive power link for a wireless endoscope. Biosens Bioelectron 22(7):1390–1395CrossRefGoogle Scholar
  52. 52.
    Niu Q, Wang L, Dong T, Yang H (2009) Application of MEMS-based energy harvester for artificial heart wireless energy transmission. In: Proceeding of Computing, Communication, Control, and Management (CCCM), pp 38–41Google Scholar
  53. 53.
    Cao H, Landge V, Tata U, Seo Y, Rao S, Tand S et al (2012) An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Trans Biomed Eng 59(11):3131–3139CrossRefGoogle Scholar
  54. 54.
    Faul A, Turner M, Naber J (2011) Implantable wireless microsystems for the measurement of intraocular pressure. In: Proceeding of IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Aug 2011, pp 1–4Google Scholar
  55. 55.
    Goto K, Nakagawa T, Nakamura O, Kawata S (2001) An implantable power supply with an optical rechargeable lithium battery. IEEE Trans Biomed Eng 48(7):830–833CrossRefGoogle Scholar
  56. 56.
    Ozeri S, Shmilovitz D (2010) Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50(6):556–566CrossRefGoogle Scholar
  57. 57.
    Kim A, Maleki T, Ziaie B (2012) A novel electromechanical interrogation scheme for implantable passive transponders. In: Proceedings of IEEE MEMS, pp 31–34Google Scholar
  58. 58.
    Shaul O, Boaz S, Doron S (2012) Non-invasive sensing of the electrical energy harvested by medical implants powered by an ultrasonic transcutaneous energy transfer link. In: Proceeding of IEEE Industrial Electronics (ISIE), pp 1153–1157Google Scholar
  59. 59.
    Fowler AG, Moheimani SOR, Behrens S (2014) An omnidirectional MEMS ultrasonic energy harvester for implanted devices. J Microelectromech Syst 23(6):1454–1462CrossRefzbMATHGoogle Scholar
  60. 60.
    Mazzilli F, Lafon C, Dehollain C (2014) A 10.5 cm ultrasound link for deep implanted medical devices. IEEE Trans Biomed Circuits Syst 8(5):738–750CrossRefGoogle Scholar
  61. 61.
    Mazzilli F, Thoppay PE, Praplan V, Dehollain C (2012) Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs). In: Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS), pp 2865–2868Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA

Personalised recommendations