Skip to main content

Amniotic Membrane in Cancer

  • Chapter
Amniotic Membrane

Abstract

Cancer currently represents a public health problem. Despite scientific advances in the area of cancer treatment, particularly in the area of conventional therapies such as chemotherapy and radiotherapy, this disease continues to be responsible for a high rate of morbidity and mortality worldwide. For this reason, the emergence of new anti-cancer therapies in the medical and scientific community has been desired. The application of amniotic membrane in anti-cancer therapy is a recent idea. Since this tissue has anti-angiogenic, pro-apoptotic and immunoregulatory activities, several authors have pointed to a potential benefit resulting from the application of amniotic membrane in cancer therapy. Furthermore, given the well documented stem properties of the cells derived from amniotic membrane, some authors have relied on these knowledge to support its application in cancer therapy. In fact, despite this being a new idea, several papers with promising results have been already published about this topic, all pointing to a potential benefit of the use of amniotic membrane in the treatment of oncological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy SL, Xu J, Kochanek KD (2013) National vital statistics reports – deaths: final data for 2010. Natl Vital Stat Rep 61:1–52

    PubMed  Google Scholar 

  2. Jemal A, Bray F, Ferlay J et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366

    Article  CAS  PubMed  Google Scholar 

  4. Valko M, Rhodes C, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  5. Verrax J, Taper H, Calderon PB (2008) Targeting cancer cells by an oxidant-based therapy. Curr Mol Pharmacol 1:80–92

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  8. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  CAS  PubMed  Google Scholar 

  9. Urruticoechea A, Alemany R, Balart J et al (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16:3–10

    Article  CAS  PubMed  Google Scholar 

  10. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  11. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  13. Kato H, Ichinose Y, Ohta M et al (2004) A randomized trial of adjuvant chemotherapy with Uracil–Tegafur for adenocarcinoma of the lung. N Engl J Med 350:1713–1721

    Article  CAS  PubMed  Google Scholar 

  14. Fernandes M, Sridhar MS, Sangwan VS, Rao GN (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653

    Article  PubMed  Google Scholar 

  15. Baradaran-Rafii A, Aghayan H-R, Arjmand B, Javadi M-A (2007) Amniotic membrane transplantation. Iran J Ophthalmic Res 2:58–75

    Google Scholar 

  16. Hill SJ (2008) Placental amniotic membrane: the pathway to ocular transplantation. AORN 88:731–746

    Article  Google Scholar 

  17. Rahman I, Said D, Maharajan V, Dua H (2009) Amniotic membrane in ophthalmology: indications and limitations. Eye 23:1954–1961

    Article  CAS  PubMed  Google Scholar 

  18. Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  19. Murube J (2006) Early clinical use of amniotic membrane in medicine and ophthalmology. Ocul Surf 4:114–119

    Article  PubMed  Google Scholar 

  20. Singh R, Chacharkar M (2011) Dried gamma-irradiated amniotic membrane as dressing in burn wound care. J Tissue Viability 20:49–54

    Article  PubMed  Google Scholar 

  21. Meller D, Pires RT, Mack RJ et al (2000) Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology 107:980–990

    Article  CAS  PubMed  Google Scholar 

  22. Gajiwala K, Gajiwala AL (2004) Evaluation of lyophilised, gamma-irradiated amnion as a biological dressing. Cell Tissue Bank 5:73–80

    Article  PubMed  Google Scholar 

  23. Seo JH, Kim YH, Kim JS (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70:812–814

    Article  CAS  PubMed  Google Scholar 

  24. Niknejad H, Khayat-Khoei M, Peirovi H (2012) Inhibition of MMPs might increase anticancer properties of amniotic epithelial cells. Med Hypotheses 78:690–691

    Article  CAS  PubMed  Google Scholar 

  25. Niknejad H, Yazdanpanah G, Mirmasoumi M et al (2013) Inhibition of HSP90 could be possible mechanism for anti-cancer property of amniotic membrane. Med Hypotheses 81:862–865

    Article  CAS  PubMed  Google Scholar 

  26. Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new antitumor therapeutic strategy. Cytotherapy 16:33–40

    Article  CAS  PubMed  Google Scholar 

  27. Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  CAS  PubMed  Google Scholar 

  28. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Article  CAS  PubMed  Google Scholar 

  29. Hao Y, Ma DH-K, Hwang DG et al (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea and conjunctiva. Cornea 18:73–79

    Article  CAS  PubMed  Google Scholar 

  31. Takashima S, Yasuo M, Sanzen N et al (2008) Characterization of laminin isoforms in human amnion. Tissue Cell 40:75–81

    Article  CAS  PubMed  Google Scholar 

  32. Hopkinson A, McIntosh RS, Shanmuganathan V et al (2006) Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res 5:2226–2235

    Article  CAS  PubMed  Google Scholar 

  33. Shao C, Sima J, Zhang SX et al (2004) Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Investig Ophthalmol Vis Sci 45:1758–1762

    Article  Google Scholar 

  34. Kobayashi N, Kabuyama Y, Sasaki S et al (2002) Suppression of corneal neovascularization by culture supernatant of human amniotic cells. Cornea 21:62–67

    Article  PubMed  Google Scholar 

  35. Bold RJ, Termuhlen PM, McConkey DJ (1997) Apoptosis, cancer and cancer therapy. Surg Oncol 6:133–142

    Article  CAS  PubMed  Google Scholar 

  36. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  CAS  PubMed  Google Scholar 

  37. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis: its significance in cancer and cancer therapy. Cancer 73:2013–2026

    Article  CAS  PubMed  Google Scholar 

  38. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  PubMed  Google Scholar 

  39. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li H, Niederkorn JY, Neelam S et al (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907

    Article  PubMed  Google Scholar 

  41. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    CAS  PubMed  Google Scholar 

  42. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  CAS  PubMed  Google Scholar 

  43. Li W, He H, Kawakita T et al (2006) Amniotic membrane induces apoptosis of interferon-gamma activated macrophages in vitro. Exp Eye Res 82:282–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. He H, Li W, Chen S-Y et al (2008) Suppression of activation and induction of apoptosis in RAW264.7 cells by amniotic membrane extract. Invest Ophthalmol Vis Sci 49:4468–4475. doi:10.1167/iovs.08-1781

    Article  PubMed Central  PubMed  Google Scholar 

  45. Mamede AC, Carvalho MJ, Abrantes AM et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349:447–458

    Article  CAS  PubMed  Google Scholar 

  46. Belmar-Lopez C, Mendoza G, Oberg D et al (2013) Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Med 11:1–16

    Article  Google Scholar 

  47. Klopp AH, Gupta A, Spaeth E et al (2011) Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29:11–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Strauer B (2003) Stem cell therapy in perspective. Circulation 107:929–934

    Article  PubMed  Google Scholar 

  49. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430, 80-

    Article  CAS  PubMed  Google Scholar 

  50. Kang N-H, Yi B-R, Lim SY et al (2012) Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol 40:2022–2028

    CAS  PubMed  Google Scholar 

  51. Jiao H, Guan F, Yang B et al (2012) Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39:467–473

    Article  CAS  PubMed  Google Scholar 

  52. Magatti M, De Munari S, Vertua E, Parolini O (2012) Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J Cell Mol Med 16:2208–2218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Khakoo AY, Pati S, Anderson SA et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203:1235–1247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  55. Ehtesham M, Kabos P, Gutierrez MA et al (2002) Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62:7170–7174

    CAS  PubMed  Google Scholar 

  56. Childs R, Chernoff A, Contentin N et al (2000) Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 343:750–758

    Article  CAS  PubMed  Google Scholar 

  57. Yip K, Reed J (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    Article  CAS  PubMed  Google Scholar 

  58. Sun Y, Peng Z-L (2009) Programmed cell death and cancer. Postgrad Med J 85:134–140

    Article  CAS  PubMed  Google Scholar 

  59. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Article  PubMed  Google Scholar 

  60. Williams G, Stoeber K (2012) The cell cycle and cancer. J Pathol 226:352–364

    Article  CAS  PubMed  Google Scholar 

  61. Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22

    Article  CAS  PubMed  Google Scholar 

  62. Kim S-W, Zhang H-Z, Kim CE et al (2012) Amniotic mesenchymal stem cells have robust angiogenic properties and are effective in treating hindlimb ischaemia. Cardiovasc Res 93:525–534

    Article  CAS  PubMed  Google Scholar 

  63. Kim S-W, Zhang H-Z, Guo L et al (2012) Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS One 7:e41105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  Google Scholar 

  65. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Catarina Mamede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mamede, A.C., Pires, A.S., Brito, A.F. (2015). Amniotic Membrane in Cancer. In: Mamede, A., Botelho, M. (eds) Amniotic Membrane. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9975-1_8

Download citation

Publish with us

Policies and ethics