Skip to main content

Biophysical Properties of Amniotic Membrane

  • Chapter
Amniotic Membrane

Abstract

Placenta constitutes the barrier between the fetus and the mother that allow the transport of nutrients as well as waste products between the fetus and the mother. The transport, can occur by different ways: simple diffusion, facilitated diffusion and receptor-mediated endocytosis, or by paracellular flow. The way nutrients are transported is influenced by several characteristics namely permeability, nutrient concentration gradients, placental blood flow and metabolism. Physical properties such as elasticity, stiffness and other rheological properties of amniotic membrane and extracellular matrix which are also influenced by the variation of the placenta composition and gestational age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damiano A (2011) Review: water channel proteins in the human placenta and fetal membranes. Placenta 32:S207–S211

    Article  PubMed  Google Scholar 

  2. Hieber A, Corcino D, Motosue J et al (1997) Detection of elastin in the human fetal membranes: proposed molecular basis for elasticity. Placenta 18:301–312

    Article  CAS  PubMed  Google Scholar 

  3. Moore R, Mansour J, Redline R et al (2006) The physiology of fetal membrane rupture: insight gained from the determination of physical properties. Placenta 27:1037–1051

    Article  CAS  PubMed  Google Scholar 

  4. Levkovitz R, Zaretsky U, Gordon Z et al (2013) In vitro simulation of placental transport – part I: biological model of the placental barrier. Placenta 34:699–707

    Article  CAS  PubMed  Google Scholar 

  5. Jansson T, Powell T (2006) Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? – A review. Placenta 27:91–97

    Article  Google Scholar 

  6. Calvin SE, Oyen ML (2007) Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann N Y Acad Sci 1101:166–185

    Article  PubMed  Google Scholar 

  7. Beall M, van den Wijngaard J, van Gemert M, Ross M (2007) Amniotic fluid water dynamics. Placenta 28:816–823

    Article  CAS  PubMed  Google Scholar 

  8. Beall M, van den Wijngaard J, van Gemert M et al (2007) Regulation of amniotic fluid volume. Placenta 28:824–832

    Article  CAS  PubMed  Google Scholar 

  9. Zeuthen T (1995) Molecular mechanisms for passive and active transport of water. Int Rev Cytol 160:99–161

    Article  CAS  PubMed  Google Scholar 

  10. Menjoge ARA, Navatha RS, Asad A et al (2010) Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimers. Biomaterials 31:5007–5021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Levkovitz R, Zaretsky U, Jaffa A et al (2013) In vitro simulation of placental transport – Part II: glucose transfer across the placental barrier model. Placenta 34:708–715

    Article  CAS  PubMed  Google Scholar 

  12. Hutson J, Garcia-Bournissen F, Davis A, Koren G (2011) The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther 90:67–76

    Article  CAS  PubMed  Google Scholar 

  13. Mathiesen L, Mose T, Mørck TJ et al (2010) Quality assessment of a placental perfusion protocol. Reprod Toxicol 30:138–146

    Article  CAS  PubMed  Google Scholar 

  14. Sastry BR (1999) Techniques to study human placental transport. Adv Drug Deliv Rev 38:17–39

    Article  CAS  PubMed  Google Scholar 

  15. Heaton SJ, Eady JJ, Parker ML et al (2008) The use of BeWo cells as an in vitro model for placental iron transport. Am J Physiol Cell Physiol 295:C1445–C1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Poulsen MS, Rytting E, Mose T, Knudsen LE (2009) Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol Vitro 23:1380–1386

    Article  CAS  Google Scholar 

  17. Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy 179827:179827

    Google Scholar 

  18. Jones H, Powell T, Jansson T (2007) Regulation of placental nutrient transport: a review. Placenta 28:763–774

    Article  CAS  PubMed  Google Scholar 

  19. Benson-Martin J, Zammaretti P, Bilic G et al (2006) The Young’s modulus of fetal preterm and term amniotic membranes. Eur J Obstet Gynecol Reprod Biol 128:103–107

    Article  PubMed  Google Scholar 

  20. Niknejad H, Peirovi H, Jorjani M et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    CAS  PubMed  Google Scholar 

  21. Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225

    Article  CAS  PubMed  Google Scholar 

  22. Pressman EK, Cavanaugh JL, Woods JR (2014) Physical properties of the chorioamnion throughout gestation. Am J Obstet Gynecol 187:672–675

    Article  Google Scholar 

  23. Chen B, Jones RR, Mi S et al (2012) The mechanical properties of amniotic membrane influence its effect as a biomaterial for ocular surface repair. Soft Matter 8:8379

    Article  CAS  Google Scholar 

  24. Chua WK, Oyen ML (2009) Do we know the strength of the chorioamnion? A critical review and analysis. Eur J Obstet Gynecol Reprod Biol 144:128–133

    Article  Google Scholar 

  25. Artal R, Sokol R, Neuman M et al (1976) The mechanical properties of prematurely and non-prematurely ruptured membranes: methods and preliminary results. Am J Obstet Gynecol 125:655–659

    CAS  PubMed  Google Scholar 

  26. Artal R, Burgeson R, Hobel C, Hollister D (1979) An in vitro model for the study of enzymatically mediated biomechanical changes in the chorioamniotic membranes. Am J Obstet Gynecol 133:656–659

    CAS  PubMed  Google Scholar 

  27. Oxlund H, Helmig R, Halaburt J, Uldbjerg N (1990) Biomechanical analysis of human chorioamniotic membranes. Eur J Obstet Gynecol Reprod Biol 34:247–255

    Article  CAS  PubMed  Google Scholar 

  28. Helmig R, Oxlund H, Petersen LK, Uldbjerg N (1993) Different biomechanical properties of human fetal membranes obtained before and after delivery. Eur J Obstet Gynecol Reprod Biol 48:183–189

    Article  CAS  PubMed  Google Scholar 

  29. Sillero A, Selivanov VA, Cascante M (2006) Pentose phosphate and calvin cycles: similarities and three-dimensional views. Biochem Mol Biol Educ 34:275–277

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Filomena Botelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abrantes, A.M., Casalta-Lopes, J., Botelho, M.F. (2015). Biophysical Properties of Amniotic Membrane. In: Mamede, A., Botelho, M. (eds) Amniotic Membrane. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9975-1_3

Download citation

Publish with us

Policies and ethics