Production Function Models Estimation

  • Nabaz T. KhayyatEmail author
Part of the Green Energy and Technology book series (GREEN)


In this chapter the first group of econometric models the Cobb-Douglas production function and the Translog production function are estimated. The findings from estimating the Cobb-Douglas production function model reveal that (i) In general the South Korean industries are exhibiting increasing returns to scale , (ii) There is a slight substitution pattern between energy and ICT capital, and (iii) There is a significant and positive impact of energy use on the production level in the South Korean industries.


Production Function Total Factor Productivity Technical Change Input Factor Perfect Competition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, W. B., Weigelt, K., Doherty, N., & Mansfield, E. (2009). Managerial economics: Theory, applications, and cases. New York, USA: Norton.Google Scholar
  2. Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139–165. doi: 10.2307/1811556.Google Scholar
  3. Fai, A. H. T., & Cornelius, P. L. (1996). Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of Statistical Computation and Simulation, 54(4), 363–378. doi: 10.1080/00949659608811740.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Felipe, J., & Adams, F. G. (2005). A theory of production" the estimation of the Cobb-Douglas function: A retrospective view. Eastern Economic Journal, 31(3), 427–445.Google Scholar
  5. Gallant, A. R. (2008). Nonlinear statistical models. Wiley.Google Scholar
  6. Heshmati, A. (1994). Estimating random effects production function models with selectivity bias: an application to Swedish crop producers. Agricultural Economics, 11(2–3), 171–189. doi: 10.1016/0169-5150(50)00017-3.CrossRefGoogle Scholar
  7. Heshmati, A., & Kumbhakar, S. C. (2011). Technical change and total factor productivity growth: The case of Chinese provinces. Technological Forecasting and Social Change, 78(4), 575–590. doi: 10.1016/j.techfore.2010.11.006.CrossRefGoogle Scholar
  8. Johnston, J. (1984). Econmetric methods (3rd ed.). New York: Mc-Graw-Hill.Google Scholar
  9. Moss, C. B., Erickson, K. W., Ball, V. E., & Mishra, A. K. (2003). A Translog Cost Function Analysis of U.S. Agriculture: A Dynamic Specification. Retrieved from:
  10. Oh, D., Heshmati, A., & Lööf, H. (2012). Technical change and total factor productivity growth for Swedish manufacturing and service industries. Applied Economics, 44(18), 2373–2391. doi: 10.1080/00036846.2011.564147.CrossRefGoogle Scholar
  11. Pavelescu, F. M. (2011). Some aspects of the translog production function estimation. Romanian Journal of Economics, 32(1(41)), 131–150.Google Scholar
  12. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1994). Numerical recipes in pascal. Cambridge: Cambridge University Press.Google Scholar
  13. Sauer, J., Frohberg, K., & Hockmann, H. (2006). Stochastic efficiency measurement: The curse of theoretical consistency. Journal of Applied Economics, 9(1), 139–165.Google Scholar
  14. Turnovsky, M. H. L., & Donnelly, W. A. (1984). Energy substitution, separability, and technical progress in the Australian iron and steel industry. Journal of Business & Economic Statistics, 2(1), 54–63. doi: 10.1080/07350015.1984.10509369.Google Scholar
  15. Tveterås, R., & Heshmati, A. (2002). Patterns of productivity growth in the norwegian salmon farming industry. International Review of Economics and Business, 2(3), 367–393.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technology Management, Economics, and Policy Program, College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations