Skip to main content

Production Function Models Estimation

  • Chapter
  • First Online:
Energy Demand in Industry

Part of the book series: Green Energy and Technology ((GREEN))

  • 673 Accesses

Abstract

In this chapter the first group of econometric models the Cobb-Douglas production function and the Translog production function are estimated. The findings from estimating the Cobb-Douglas production function model reveal that (i) In general the South Korean industries are exhibiting increasing returns to scale , (ii) There is a slight substitution pattern between energy and ICT capital, and (iii) There is a significant and positive impact of energy use on the production level in the South Korean industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All values are measured in millions of Korean Won.

  2. 2.

    The antilog is calculated because the estimated function was based on logarithm values.

  3. 3.

    The values are as follows: (|r| > 0.258 for 99 % level, (|r| > 0.196 for 95 % level, and |r| > 0.1645 for 90 % level).

  4. 4.

    The curvature property cannot be fully satisfied in each point of the data, as stated by Sauer et al. (2006): “With respect to the Translog production function curvature depends on the input bundles…. For some bundles quasi-concavity may be satisfied, but not for others. Hence, what can be expected is that the condition of negative-semidefiniteness of the bordered Hessian is met only locally or with respect to a range of bundles”.

References

  • Allen, W. B., Weigelt, K., Doherty, N., & Mansfield, E. (2009). Managerial economics: Theory, applications, and cases. New York, USA: Norton.

    Google Scholar 

  • Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139–165. doi:10.2307/1811556.

    Google Scholar 

  • Fai, A. H. T., & Cornelius, P. L. (1996). Approximate F-tests of multiple degree of freedom hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of Statistical Computation and Simulation, 54(4), 363–378. doi:10.1080/00949659608811740.

    Article  MathSciNet  MATH  Google Scholar 

  • Felipe, J., & Adams, F. G. (2005). A theory of production" the estimation of the Cobb-Douglas function: A retrospective view. Eastern Economic Journal, 31(3), 427–445.

    Google Scholar 

  • Gallant, A. R. (2008). Nonlinear statistical models. Wiley.

    Google Scholar 

  • Heshmati, A. (1994). Estimating random effects production function models with selectivity bias: an application to Swedish crop producers. Agricultural Economics, 11(2–3), 171–189. doi:10.1016/0169-5150(50)00017-3.

    Article  Google Scholar 

  • Heshmati, A., & Kumbhakar, S. C. (2011). Technical change and total factor productivity growth: The case of Chinese provinces. Technological Forecasting and Social Change, 78(4), 575–590. doi:10.1016/j.techfore.2010.11.006.

    Article  Google Scholar 

  • Johnston, J. (1984). Econmetric methods (3rd ed.). New York: Mc-Graw-Hill.

    Google Scholar 

  • Moss, C. B., Erickson, K. W., Ball, V. E., & Mishra, A. K. (2003). A Translog Cost Function Analysis of U.S. Agriculture: A Dynamic Specification. Retrieved from: http://EconPapers.repec.org/RePEc:ags:aaea03:22027.

  • Oh, D., Heshmati, A., & Lööf, H. (2012). Technical change and total factor productivity growth for Swedish manufacturing and service industries. Applied Economics, 44(18), 2373–2391. doi:10.1080/00036846.2011.564147.

    Article  Google Scholar 

  • Pavelescu, F. M. (2011). Some aspects of the translog production function estimation. Romanian Journal of Economics, 32(1(41)), 131–150.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1994). Numerical recipes in pascal. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sauer, J., Frohberg, K., & Hockmann, H. (2006). Stochastic efficiency measurement: The curse of theoretical consistency. Journal of Applied Economics, 9(1), 139–165.

    Google Scholar 

  • Turnovsky, M. H. L., & Donnelly, W. A. (1984). Energy substitution, separability, and technical progress in the Australian iron and steel industry. Journal of Business & Economic Statistics, 2(1), 54–63. doi:10.1080/07350015.1984.10509369.

    Google Scholar 

  • Tveterås, R., & Heshmati, A. (2002). Patterns of productivity growth in the norwegian salmon farming industry. International Review of Economics and Business, 2(3), 367–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabaz T. Khayyat .

Appendix A: Elasticities Estimates for the Translog Production Function

Appendix A: Elasticities Estimates for the Translog Production Function

Table 7.5 Mean input elasticities by year (elasticity of output with respect to each input)
Table 7.6 Mean input elasticities by industry (elasticity of output with respect to each input)
Table 7.7 Mean input elasticities by industries’ characteristics: technology level (elasticity of output with respect to each input)
Table 7.8 Mean input elasticities by industries’ characteristics: export orientation (elasticity of output with respect to each input)
Table 7.9 Mean input elasticities by industries’ characteristics: size (elasticity of output with respect to each input)
Table 7.10 Mean input elasticities by industries’ characteristics: R&D level (elasticity of output with respect to each input)
Table 7.11 Mean input elasticities by industries’ characteristics: oil crisis shock (elasticity of output with respect to each input)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Khayyat, N.T. (2015). Production Function Models Estimation. In: Energy Demand in Industry. Green Energy and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9953-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9953-9_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9952-2

  • Online ISBN: 978-94-017-9953-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics