Advertisement

Literature on Production Risk

  • Nabaz T. KhayyatEmail author
Chapter
  • 547 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

A noticeable number of econometric studies on production technology and firm behavior have been conducted since 1970s, where the flexible functional form technique is introduced. These studies have mainly focused on two issues, first, in measuring the producer’s responses to changes in the price of input and output, and second in measuring the productivity growth. The majority of these studies have relied on one of the two assumptions: The assumption of deterministic setting which indicates that for a given level of inputs the output level will be certainly known, or the assumption of homoskedastic production technology which implies that inputs do not affect the variability of the output.

Keywords

Utility Function Input Factor Relative Risk Aversion Initial Wealth Absolute Risk Aversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Appelbaum, E., & Ullah, A. (1997). Estimation of moments and production decisions under uncertainty. Review of Economics and Statistics, 79(4), 631–637. doi: 10.1162/003465397557033.CrossRefGoogle Scholar
  2. Arrow, K. J. (1971). Essays in the theory of risk bearing. Chicago: Markham Press.Google Scholar
  3. Asche, F., & Tveteras, R. (1999). Modeling production risk with a two-step procedure. Journal of Agricultural and Resource Economics, 24(2), 424–439.Google Scholar
  4. Binswanger, H. P. (1980). Attitudes toward risk: Experimental measurement in rural India. American Journal of Agricultural Economics, 62(3), 395. doi: 10.2307/1240194.CrossRefGoogle Scholar
  5. Briys, E., & Eeckhoudt, L. (1985). Relative risk aversion in comparative statics: Comment. The American Economic Review, 75(1), 281–283.Google Scholar
  6. Chambers, R. G. (1983). Scale and productivity-measurement under risk. American Economic Review, 73(4), 802–805. doi: 10.2307/1816579.Google Scholar
  7. Coppejans, M., Gilleskie, D., Sieg, H., & Strumpf, K. (2007). Consumer demand under price uncertainty: Empirical evidence from the market for cigarettes. Review of Economics and Statistics, 89(3), 510–521. doi: 10.1162/rest.89.3.510.CrossRefGoogle Scholar
  8. Coyle, B. T. (1999). Risk aversion and yield uncertainty in duality models of production: A mean-variance approach. American Journal of Agricultural Economics, 81(3), 553–567. doi: 10.2307/1244015.CrossRefGoogle Scholar
  9. Fufa, B., & Hassan, R. M. (2003). Stochastic maize production technology and production risk analysis in dadar district, east ethiopia. Agrekon, 42(2), 116–128. doi: 10.1080/03031853.2003.9523615.CrossRefGoogle Scholar
  10. Griffiths, W. E., & Anderson, J. R. (1982). Using time-series and cross-section data to estimate a production function with positive and negative marginal risks. Journal of the American Statistical Association, 77(379), 529–536. doi: 10.2307/2287706.CrossRefGoogle Scholar
  11. Hey, J. D. (1985). Relative risk aversion in comparative statics: Comment. The American Economic Review, 75(1), 284–285.Google Scholar
  12. Hurd, B. H. (1994). Yield response and production risk—an analysis of integrated pest-management in cotton. Journal of Agricultural and Resource Economics, 19(2), 313–326.Google Scholar
  13. Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of Econometrics, 7(1), 67–86. doi: 10.1016/0304-4076(78)90006-4.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Katz, E. (1983). Relative Risk Aversion in Comparative Statics. American Economic Review, 73(3), 452–453.Google Scholar
  15. Koundouri, P., & Nauges, C. (2005). On production function estimation with selectivity and risk considerations. Journal of Agricultural and Resource Economics, 30(03).Google Scholar
  16. Koundouri, P., Nauges, C., & Tzouvelekas, V. (2006). Technology Adoption under production uncertainty: Theory and application to irrigation technology. American Journal of Agricultural Economics, 88(3), 657–670. doi: 10.1111/j.1467-8276.2006.00886.x.CrossRefGoogle Scholar
  17. Kumbhakar, S. C. (2002a). Risk preference and productivity measurement under output price uncertainty. Empirical Economics, 27(3 SRC—GoogleScholar), 461–472.Google Scholar
  18. Kumbhakar, S. C. (2002b). Risk preferences and technology: A joint analysis. Marine Resource Economics, 17(2 SRC—GoogleScholar), 77–89.Google Scholar
  19. Kumbhakar, S. C., Hjalmarsson, L., & Heshmati, A. (2002). How fast do banks adjust? A dynamic model of labour-use with an application to Swedish banks. Journal of Productivity Analysis, 18(1), 79–102.CrossRefGoogle Scholar
  20. Kumbhakar, S. C., & Tsionas, E. G. (2010). Estimation of production risk and risk preference function: A nonparametric approach. Annals of Operations Research, 176(1), 369–378. doi: 10.1007/s10479-008-0472-5.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Kumbhakar, S. C., & Tveterås, R. (2003). Risk preferences, production risk and firm heterogeneity. Scandinavian Journal of Economics, 105(2), 275–293. doi: 10.1111/1467-9442.t01-1-00009.CrossRefGoogle Scholar
  22. Lovell, C. A. K., & Schmidt, P. (1987). A comparison of alternative approaches to the measurement of productive efficiency. In A. Dogramaci & R. Färe (Eds.), Applications of Modern Production Theory: Efficiency and Productivity (Vol. 9, pp. 3–32). Springer Netherlands.Google Scholar
  23. Menezes, C. F., & Hanson, D. L. (1970). On the theory of risk aversion. International Economic Review, 11(3), 481–487.CrossRefzbMATHGoogle Scholar
  24. Pope, R. D. (1988). A new parametric test for the structure of risk preferences. Economics Letters, 27(2), 117–121. doi: 10.1016/0165-1765(88)90082-1.MathSciNetCrossRefGoogle Scholar
  25. Pope, R. D., & Chavas, J. P. (1994). Cost-functions under production uncertainty. American Journal of Agricultural Economics, 76(2), 196–204. doi: 10.2307/1243621.CrossRefGoogle Scholar
  26. Pope, R. D., & Just, R. E. (1996). Empirical implementation of ex ante cost functions. Journal of Econometrics, 72(1–2), 231–249. doi: 10.1016/0304-4076(94)01721-2.CrossRefzbMATHGoogle Scholar
  27. Pope, R. D., & Kramer, R. A. (1979). Production uncertainty and factor demands for the competitive firm. Southern Economic Journal, 46(2), 489–501. doi: 10.2307/1057421.CrossRefGoogle Scholar
  28. Pratt, J. W. (1964). Risk-aversion in the small and in the large. Econometrica, 32(1–2), 122–136. doi: 10.2307/1913738.CrossRefzbMATHGoogle Scholar
  29. Robison, L., & Barry, P. (1987). The competitive firm’s response to risk. New York: MacMillan Publishing Company.Google Scholar
  30. Sandmo, A. (1971). On the theory of the competitive firm under price uncertainty. The American Economic Review, 61(1), 65–73.Google Scholar
  31. Tveterås, R. (1997). Econometric Modelling of Production Technology Under Risk: The Case of Norwegian Salmon Aquaculture Industry. PhD Dissertation, Norwegian School of Economics and Business Administration, Bergen, Norway.Google Scholar
  32. Tveterås, R. (1999). Production risk and productivity growth: Some findings for Norwegian Salmon aquaculture. Journal of Productivity Analysis, 12(2 SRC—GoogleScholar), 161–179.Google Scholar
  33. Tveterås, R. (2000). Flexible panel data models for risky production technologies with an application to Salomon aquaculture. Journal of Econometric Reviews, 19(3 SRC—GoogleScholar), 367–389.Google Scholar
  34. Tveteras, R., Flaten, O., & Lien, G. (2011). Production risk in multi-output industries: Estimates from Norwegian dairy farms. Applied Economics, 43(28), 4403–4414. doi: 10.1080/00036846.2010.491461.CrossRefGoogle Scholar
  35. Tveterås, R., & Heshmati, A. (2002). Patterns of productivity growth in the norwegian salmon farming industry. International Review of Economics and Business, 2(3), 367–393.Google Scholar
  36. Wan, G. H., Griffiths, W. E., & Anderson, J. R. (1992). Using panel data to estimate risk effects in seemingly unrelated Production functions. Empirical Economics, 17(1 SRC—GoogleScholar), 35–49.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technology Management, Economics, and Policy Program, College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations