Advertisement

Overview

  • Nabaz T. KhayyatEmail author
Chapter
  • 540 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

This book addresses the impact of different input factors of production, market, consumer, and producers’ characteristics on the industrial sector’s energy demand for South Korea during the period 1970–2007. The book aims at formulating an energy demand structure for the South Korean industrial sector as a tool to enable producers and policy makers to evaluate different alternatives toward reducing energy consumption, and using energy in an efficient way. Industrial policy decision makers need to understand the importance of the energy input in the industrial production structure, in order to assess and formulate necessary measures for energy conservation.

Keywords

Energy Demand Total Factor Productivity Industrial Sector Input Factor Total Factor Productivity Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable & Sustainable Energy Reviews, 15(1), 150–168. doi: 10.1016/j.rser.2010.09.003.
  2. Allan, G., Hanley, N., McGregor, P., Swales, K., & Turner, K. (2007). The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom. Energy Economics, 29(4), 779–798. doi: 10.1016/j.eneco.2006.12.006.CrossRefGoogle Scholar
  3. Allen, R. G. D. (1938). Mathematical analysis for economists. New York, USA: St. Martin’s Press.zbMATHGoogle Scholar
  4. Allen, W. B., Weigelt, K., Doherty, N., & Mansfield, E. (2009). Managerial economics: Theory, applications, and cases. New York, USA: Norton.Google Scholar
  5. Apostolakis, B. E. (1990). Energy-capital substitutability/complementarity. Energy Economics, 12(1), 48–58. doi: 10.1016/0140-9883(90)90007-3.CrossRefGoogle Scholar
  6. Benjamin, D., & Meza, F. (2009). Total factor productivity and labor reallocation: The case of the Korean 1997 crisis. B E Journal of Macroeconomics, 9(1), 1–39. doi: 10.2202/1935-1690.1625.CrossRefGoogle Scholar
  7. Berndt, E. R., & Wood, D. O. (1975). Technology, prices, and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259–268.CrossRefGoogle Scholar
  8. Berndt, E. R., & Wood, D. O. (1979). Engineering and econometric interpretations of energy-capital complementarity. American Economic Review, 69(3), 342–354.Google Scholar
  9. Cho, W. G., Nam, K., & Pagan, J. A. (2004). Economic growth and interfactor/interfuel substitution in Korea. Energy Economics, 26(1), 31–50. doi: 10.1016/j.eneco.2003.04.001.CrossRefGoogle Scholar
  10. Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28–45. doi: 10.2307/1927992.CrossRefGoogle Scholar
  11. Coelli, T., & Battese, R. D. G. (1998). An introduction to efficiency and productivity analysis. London, England: Kluwer Academic Publisher.CrossRefzbMATHGoogle Scholar
  12. Dale, A., Wathan, J., & Higgins, V. (2008). Secondary analysis of quantitative data sources. In P. Alasuutari, L. Bickman, & J. Brannen (Eds.), The sage handbook of social research methods (pp. 520–535). London: Sage.Google Scholar
  13. Dargay, J. M. (1983). The demand for energy in Swedish manufacturing-industries. Scandinavian Journal of Economics, 85(1), 37–51. doi: 10.2307/3439909.
  14. Dietmair, A., & Verl, A. (2009). A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. International Journal of Sustainable Engineering, 2(2), 123–133. doi: 10.1080/19397030902947041.CrossRefGoogle Scholar
  15. Dimitropoulos, J. (2007). Energy productivity improvements and the rebound effect: An overview of the state of knowledge. Energy Policy, 35(12), 6354–6363. doi: 10.1016/j.enpol.2007.07.028.CrossRefGoogle Scholar
  16. EIA. (2011). International Energy Outlook. U.S. Energy Information Administration. Retrieved from EIA http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf.
  17. EIA. (n.d.). International Energy Statistics-Units. U.S. Energy Information Administration. Retrieved from EIA http://www.eia.gov/cfapps/ipdbproject/docs/unitswithpetro.cfm.
  18. EPA. (2007). Energy Trends in Selected Manufacturing Sectors: Opportunities and Challenges for Environmentally Preferable Energy Outcomes. Enviromental Protection Agency. Retrieved from EPA http://www.epa.gov/sectors/pdf/energy/report.pdf.
  19. Favennec, J. P. (2005). Oil and natural gas supply for Europe. Catalysis Today, 106(1–4), 2–9. doi: 10.1016/j.cattod.2005.07.171.
  20. Field, B. C., & Grebenstein, C. (1980). Capital-energy substitution in U.S. manufacturing. The Review of Economics and Statistics, 62(2), 207. doi: 10.2307/1924746.CrossRefGoogle Scholar
  21. Finley, M. (2012). The oil market to 2030: Implications for investment and policy. Economics of Energy and Environmental Policy, 1(1), 25–36.CrossRefGoogle Scholar
  22. Friedemann, M., Staake, T., & Weiss, M. (2010). Ict for green: How computers can help us to conserve energy. Paper presented at the proceedings of the 1st international conference on energy-efficient computing and networking, Passau, Germany.Google Scholar
  23. Frondel, M., & Schmidt, C. M. (2002). The capital-energy controversy: An artifact of cost shares? Energy, 23(3), 53–79.Google Scholar
  24. Fukao, K., Miyagawa, T., & Pyo, H. K. (2009). Estimates of multifactor productivity, ICT contributions and resource reallocation effects in japan and korea. RIETI Discussion Paper Series 09-E-021. Retrieved from The Research Institute of Economy, Trade and Industry http://www.rieti.go.jp/jp/publications/dp/09e021.pdf.
  25. Griffin, J. M., & Gregory, P. R. (1976). An intercountry translog model of energy substitution responses. The American Economic Review, 66(5), 845–857. doi: 10.2307/1827496.Google Scholar
  26. Heshmati, A. (1996). On the single and multiple time trends representation of technical change. Applied Economics Letters, 3(8), 495–499. doi: 10.1080/135048596356104.CrossRefGoogle Scholar
  27. Heshmati, A. (2001). Labour demand and efficiency in Swedish savings banks. Applied Financial Economics, 11(4), 423–433. doi: 10.1080/096031001300313983.CrossRefGoogle Scholar
  28. Heshmati, A. (2003). Productivity growth, efficiency and outsourcing in manufacturing and service industries. Journal of Economic Surveys, 17(1), 79–112. doi: 10.1111/1467-6419.00189.MathSciNetCrossRefGoogle Scholar
  29. Heshmati, A. (2013). Demand, customer base-line and demand response in the electricity market: A survey. Journal of Economic Surveys, n/a–n/a. doi: 10.1111/joes.12033.
  30. Hicks, J. R. (1961). Marshall’s third rule: A further comment. Oxford Economic Papers, 13(3), 262–265.Google Scholar
  31. Imran, K., & Siddiqui, M. M. (2010). Energy consumption and economic growth: A case study of three SAARC countries. European Journal of Social Sciences, 16(2), 206–213.Google Scholar
  32. Johnson, B. (2001). Toward a new classification of nonexperimental quantitative research. Educational Researcher, 30(2), 3–13.CrossRefGoogle Scholar
  33. Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of Econometrics, 7(1), 67–86. doi: 10.1016/0304-4076(78)90006-4.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Just, R. E., & Pope, R. D. (1979). Production function estimation and related risk considerations. American Journal of Agricultural Economics, 61(2), 276–284. doi: 10.2307/1239732.CrossRefGoogle Scholar
  35. Kim, B. C., & Labys, W. C. (1988). Application of the translog model of energy substitution to developing-countries—the case of Korea. Energy Economics, 10(4), 313–323. doi: 10.1016/0140-9883(88)90043-6.CrossRefGoogle Scholar
  36. Knut, S., & Hammond, P. (1995). Mathematics for economic analysis. Prentice Hall.Google Scholar
  37. Koetse, M. J., de Groot, H. L. F., & Florax, R. J. G. M. (2008). Capital-energy substitution and shifts in factor demand: A meta-analysis. Energy Economics, 30(5), 2236–2251. doi: 10.1016/j.eneco.2007.06.006.CrossRefGoogle Scholar
  38. Koopmants, T. C. (1951). An analysis of production as an efficient combination of activities. In T. C. Koopmants (Ed.), Activity analysis of production and allocation (pp. 33–97). New York: USA Wiley.Google Scholar
  39. Kuemmel, R., Stresin, R., Lindenberger, D., & Journal, B. (2008). Co-integration of output, capital, labor and energy. The European Physical, 66(2), 279–287.CrossRefzbMATHGoogle Scholar
  40. Kumbhakar, S. C. (1997). Efficiency estimation with heteroscedasticity in a panel data model. Applied Economics, 29(1 SRC—GoogleScholar), 379–386.Google Scholar
  41. Kumbhakar, S. C., Heshmati, A., & Hjalmarsson, L. (1997). Temporal patterns of technical efficiency: Results from competing models. International Journal of Industrial Organization, 15(5), 597–616. doi: 10.1016/S0167-7187(96)01053-3.CrossRefGoogle Scholar
  42. Kumbhakar, S. C., Hjalmarsson, L., & Heshmati, A. (2002). How fast do banks adjust? A dynamic model of labour-use with an application to Swedish banks. Journal of Productivity Analysis, 18(1), 79–102.CrossRefGoogle Scholar
  43. Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis. Cambridge: U. K.CrossRefzbMATHGoogle Scholar
  44. Lomax, R. G. (2007). Statistical concepts: A second course for education and the behavioral sciences (3rd ed.). Lawrence Erlbaum Associates: Mahwah, NJ.Google Scholar
  45. Lovell, C. A. K. (1996). Applying efficiency measurement techniques to the measurement of productivity change. Journal of Productivity Analysis, 7(2–3), 329–340.CrossRefGoogle Scholar
  46. Mahony, M., Timmer, M. P., & Klems, U. E. (2009). Output, input and productivity measures at the industry level. 119(538 SRC—GoogleScholar), F374–F403.Google Scholar
  47. Mukherjee, K. (2008). Energy use efficiency in U.S. manufacturing: A nonparametric analysis. Energy Economics, 30(1), 76–96. doi: 10.1016/j.eneco.2006.11.004.CrossRefGoogle Scholar
  48. O’Mahony, M., & Timmer, M. P. (2009). Output, input and productivity measures at the industry level: The EU KLEMS database. The Economic Journal, 119(538), F374–F403. doi: 10.1111/j.1468-0297.2009.02280.x.CrossRefGoogle Scholar
  49. O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690. doi: 10.1007/s11135-006-9018-6.
  50. Park, C., Kwon, K., Kim, W., Min, B., Park, S., Sung, I., & Seok, J. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173. doi: 10.1007/s12541-009-0107-z.CrossRefGoogle Scholar
  51. Pindyck, R. S. (1979). Interfuel substitution and the industrial demand for energy: An international comparison. The Review of Economics and Statistics, 61(2 SRC—GoogleScholar), 169–179.Google Scholar
  52. Ramaswami, B. (1992). Production risk and optimal input decisions. American Journal of Agricultural Economics, 74(4), 860–869. doi: 10.2307/1243183.CrossRefGoogle Scholar
  53. Sahu, S. K., & Narayanan, K. (2011). Total factor productivity and energy intensity in Indian manufacturing : A cross-sectional study. International Journal of Energy Economics and Policy, 1(2 SRC—GoogleScholar), 47–58.Google Scholar
  54. Saicheua, S. (1987). Input substitution in Thailand’s manufacturing sector: Implications for energy policy. Energy Economics 9(1 SRC—GoogleScholar), 55–63.Google Scholar
  55. Solow, R. M. (1957). Technical change and the aggregate production function. Review of Economics and Statistics, 39(3), 312–320. doi: 10.2307/1926047.MathSciNetCrossRefGoogle Scholar
  56. Soytas, U., & Sari, R. (2009). Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecological Economics, 68(6), 1667–1675. doi: 10.1016/j.ecolecon.2007.06.014.CrossRefGoogle Scholar
  57. Stern, D. I. (2011). The role of energy in economic growth. Annals of the New York Academy of Sciences, 1219(1), 26–51. doi: 10.1111/j.1749-6632.2010.05921.x.CrossRefGoogle Scholar
  58. Strassmann, W. P. (1959). Interrelated industries and the rate of technological-change. Review of Economic Studies, 27(72–7), 16–22. doi: 10.2307/2296047.CrossRefGoogle Scholar
  59. Terrados, J., Almonacid, G., & Hontoria, L. (2007). Regional energy planning through SWOT analysis and strategic planning tools: Impacts on renewable development. Renewable and Sustainable Energy Reviews, 11(1), 1275–1287.CrossRefGoogle Scholar
  60. Thompson, P., & Taylor, T. G. (1995). The capital-energy substitutability debate: A new look. The Review of Economics and Statistics, 77(3), 565–569. doi: 10.2307/2109916.CrossRefGoogle Scholar
  61. Timmer, C. P. (1971). Using a probabilistic frontier production function to measure technical efficiency. Journal of Political Economy, 79(4), 776–794. doi: 10.1086/259787.CrossRefGoogle Scholar
  62. Tveterås, R. (2000). Flexible panel data models for risky production technologies with an application to Salomon aquaculture. Journal of Econometric Reviews, 19(3 SRC—GoogleScholar), 367–389.Google Scholar
  63. Tveterås, R., & Heshmati, A. (2002). Patterns of productivity growth in the norwegian salmon farming industry. International Review of Economics and Business, 2(3), 367–393.Google Scholar
  64. Urga, G., & Walters, C. (2003). Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand. Energy Economics, 25(1), 1–21. doi: 10.1016/S0140-9883(02)00022-1.CrossRefGoogle Scholar
  65. Wang, C. X., & Webster, S. (2007). Channel coordination for a supply chain with a risk-neutral manufacturer and a loss-averse retailer. Decision Sciences, 38(3), 361–389. doi: 10.1111/j.1540-5915.2007.00163.x.CrossRefGoogle Scholar
  66. Welsch, H., & Ochsen, C. (2005). The determinants of aggregate energy use in West Germany: factor substitution, technological change, and trade. Energy Economics, 27(1), 93–111. doi: 10.1016/j.eneco.2004.11.004.CrossRefGoogle Scholar
  67. Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187. doi: 10.1007/s10109-005-0155-6.CrossRefGoogle Scholar
  68. Wooldridge, J. M. (2006). Introductory Econometrics: A modern approach (4th ed.). Michigan State University.Google Scholar
  69. Zahan, M., & Kenett, R. S. (2013). Modeling and forecasting energy consumption in the manufacturing industry in South Asia. International Journal of Energy Economics and Policy, 2(1), 87–98.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technology Management, Economics, and Policy Program, College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations