Service Life and Environmental Impact Due to Repairs by Metakaolin Concrete After Chloride Attack

  • Aruz PetcherdchooEmail author
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 10)


A Crank-Nicolson based finite difference approach is developed for numerical assessment of chloride diffusion in concrete structures with repairs. The repair by cover concrete replacement is applied at a critical time which the chloride content at a threshold depth reaches its critical value for initiation of rebar corrosion. This aims at corrosion-free condition of concrete structures. The critical time is defined as the repair time, which the CO2 due to repair concrete production and replacement processing occurs. From the study, it is found that increasing the amount of metakaolin in repair concrete by 4 % not only leads to longer service life extension after repairs and fewer repairs but also reduces the amount of CO2 by 50 %.


Service Life Chloride Content Chloride Diffusion Repair Material Concrete Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was funded by the board of higher education and King Mongkut’s University of Technology North Bangkok under the contract no. KMUTNB-GEN-58-22.


  1. 1.
    Petcherdchoo, A.: Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete. Constr. Build. Mater. 38, 497–507 (2013)CrossRefGoogle Scholar
  2. 2.
    Bai, J., Wild, S., Sabir, B.: Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater. Cem. Conc. Res. 33(3), 353–362 (2013)CrossRefGoogle Scholar
  3. 3.
    Shekarchi, M., Rafiee, A., Layssi, H.: Long-term chloride diffusion in silica fume concrete in harsh marine climates. Cem. Concr. Compos. 31(10), 769–775 (2009)CrossRefGoogle Scholar
  4. 4.
    Nai-qian, F., Hsia-ming, Y., Li-Hong, Z.: The strength effect of mineral admixture on cement concrete. Cem. Concr. Res. 18(3), 464–472 (1988)CrossRefGoogle Scholar
  5. 5.
    Petcherdchoo, A.: Maintaining condition and safety of deteriorating bridges by probabilistic models and optimization. Ph.D. thesis, University of Colorado, Boulder, USA (2004)Google Scholar
  6. 6.
    WCED (The World Commission on Environment and Development): Our Common Future. Oxford University Press, Oxford (1987)Google Scholar
  7. 7.
    Sakai, K.: Environmental design for concrete structures. J. Adv. Concr. Technol. 3(1), 17–28 (2005)CrossRefGoogle Scholar
  8. 8.
    Heath, A., Paine, K., McManus, M.: Minimising the global warming potential of clay based geopolymers. J. Cleaner Prod. 78, 75–83 (2014)CrossRefGoogle Scholar
  9. 9.
    Petcherdchoo, A.: Service life cycle assessment of chloride attacked concrete structures with silane treatment considering environmental impacts. In: 10th International Symposium. on New Technologies for Urban Safety on Mega Cities in Asia, Thailand (2011)Google Scholar
  10. 10.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon, Oxford (1975)Google Scholar
  11. 11.
    Thomas, M.D.A., Bentz, E.C.: Life-365 Manual. Master Builders (2000)Google Scholar
  12. 12.
    Petcherdchoo, A.: Service Life and Environmental Impacts due to Repairs on Concrete Structures under Chloride Attack. Report KMUTNB, Bangkok (2015) (in Thai)Google Scholar
  13. 13.
    JSCE: Standard Specification for Durability of Concrete. Concrete Library (2002) (in Japanese)Google Scholar
  14. 14.
    FIB (CEB-FIP): Design of durable concrete structures. In: Structural Concrete Textbook on Behaviour, Design and Performance, 2nd edn., vol. 3. Sprint-Digital-Druck, Stuttgart (2009)Google Scholar
  15. 15.
    von Rosenberg, D.U.: Methods for the Numerical Solution of Partial Differential Equations. Elsevier, Amsterdam (1969)zbMATHGoogle Scholar
  16. 16.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1996)Google Scholar
  17. 17.
    FIB (CEB-FIP): Model Code for Service Life Design. Task Group 5.6. Sprint-Digital-Druck, Stuttgart (2006)Google Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.BangsueThailand

Personalised recommendations