Advertisement

Industrial Manufacture of a Low-Clinker Blended Cement Using Low-Grade Calcined Clays and Limestone as SCM: The Cuban Experience

  • L. VizcaínoEmail author
  • M. Antoni
  • A. Alujas
  • F. Martirena
  • K. Scrivener
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 10)

Abstract

The results of an industrial trial for the production and applications of a low-clinker blended cement—also called low carbon cement (LCC)—based on the system clinker-calcined clay-limestone are presented. A low-purity kaolinitic clay was calcined in a rotatory kiln and used in the manufacture of the ternary blended cement. The produced cement contains 50 % of clinker, 41 % of the combined addition calcined clay-limestone in a 2:1 proportion and gypsum. The ternary blend accomplish with the requirements of Cuban standards for blended cements although it exceed the allowed additions limit in 10 %. Concrete prefabricated elements made with the LCC under industrial conditions exhibit nice mechanical and permeability properties. It is estimated that the massive production of this type of cements may contribute to the reduction of CO2 emission in more than 25 % related to daily practice.

Keywords

Compressive Strength Ordinary Portland Cement Thermo Gravimetric Analysis Cement Industry Cement Manufacture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thanks the financial support from the Suisse National Foundation (SNF) to this project and the Laboratoires des Matériaux de Construction (LMC) of the École Polytechnique Fédérale de Lausanne (EPFL) for offering their facilities. The authors would also like to acknowledge to the Cuban Ministry of Construction, especially to Siguaney cement factory, for all the technical and material support.

References

  1. 1.
    U.S.G.S.: Mineral commodity summaries. U.S. Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/cement/ (2002)
  2. 2.
    U.S.G.S. Mineral commodity summaries, January 2013. U.S. Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/cement/ (2013)
  3. 3.
    Gartner, E.: Industrially interesting approaches to ‘‘low-CO2’’ cements. Cem. Concr. Res. 34(9), 1489–1498 (2004)CrossRefGoogle Scholar
  4. 4.
    Damtoft, J.S., et al.: Sustainable development and climate change initiatives. Cem. Concr. Res. 38(2), 115–127 (2008)CrossRefGoogle Scholar
  5. 5.
    WBCD—CSI: Guidelines for emissions monitoring and reporting in the cement industry. Emissions Monitoring and Reporting_Version 2.0. www.wbcsdcement.org, p. 40 (2013)
  6. 6.
    Flatt, R.J., Roussel, N., Cheeseman, C.R.: Concrete: an eco material that needs to be improved. J. Eur. Ceram. Soc. 32, 2787–2798 (2012)Google Scholar
  7. 7.
    Müller, N., Harnisch, J.: A blueprint for a climate friendly cement industry. WWF, Lafarge Conservation Partnership. www.panda.org/climatesavers (2008)
  8. 8.
    John, V.M.: On the sustainability of the Concrete. UNEP J. Ind. Environ. 7 (2002)Google Scholar
  9. 9.
    Cembureau: Activity report, D/2011/5457/May, Editor. www.cembureau.eu (2010)
  10. 10.
    Olivier, J.G.J., Janssens-Maenhout, G., Peters, J.A.H.W. Trends in Global CO2 Emissions; 2012 Report, p. 42 (2012). ISBN 978-92-79-25381-2Google Scholar
  11. 11.
    Taylor, M., Tam, C., Gielen, D.: Energy Efficiency and CO2 Emissions from the Global Cement Industry in Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry. Energy Technology Policy Division International Energy Agency: IEA, Paris, p. 77 (2006)Google Scholar
  12. 12.
    Schneider, M., et al.: Sustainable cement production—present and future. Cem. Concr. Res. 41(7), 642–650 (2011)CrossRefGoogle Scholar
  13. 13.
    Tennis, P.D., Thomas, M.D.A., Weiss W.J.: State of the art report on use of limestone in cements at levels of up to 15 %, R.D. Information, Editor, p. 78. www.cement.org (2011)
  14. 14.
    Sabir, B.B., Wild, S., Bai, J.: Metakaolin and calcined clays as pozzolans for concrete: a review. Cement Concr. Compos. 23(6), 441–454 (2001)CrossRefGoogle Scholar
  15. 15.
    Antoni, M., et al.: Cement substitution by blends of metakaolin and limestone. Cem. Concr. Res. 42(12), 1579–1589 (2012)CrossRefGoogle Scholar
  16. 16.
    Fernández López, R.: Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries, in Faculté Sciences et Techniques de L’Ingeniur. École Polytechnique Federale de Lausanne: Lausanne, p. 178 (2009)Google Scholar
  17. 17.
    Vizcaíno Andrés, L.M.: Cemento de bajo carbono a partir del sistema cementicio ternario clínquer - arcilla calcinada - caliza, in Ingeniería Civil. Universidad Central Marta Abreu de Las Villas: Impreso en Cuba (2014)Google Scholar
  18. 18.
    Fernández, R., Martirena, F., Scrivener, K.: The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 41(1), 113–122 (2011)CrossRefGoogle Scholar
  19. 19.
    Vizcaíno, L., et al.: Effect of fineness in clinker-calcined clays-limestone cements accepted for Advanced in Cement Research 27(1), 1–11 (2015)Google Scholar
  20. 20.
    NC/CTN22, NC 96: 2011 Cemento con adición activa. Especificaciones.Oficina Nacional de Normalización Impreso en Cuba (2011)Google Scholar
  21. 21.
    NC/CTN22, NC 54-207: 2000 Cemento - Ensayos físico-mecánicos. Oficina Nacional de Normalización (NC): Impreso en Cuba 2000Google Scholar
  22. 22.
    NC/CTN22, NC 54-206:2000 Cemento - Análisis químico de arbitraje. Oficina Nacional de Normalización (NC): Impreso en Cuba (2000)Google Scholar
  23. 23.
    NC/CTN22, NC 524: 2007 Cemento hidráulico. Método de ensayo. Determinación de la consistencia normal y tiempos de fraguado por aguja Vicat. Oficina Nacional de Normalización (NC): Impreso en Cuba 2007Google Scholar
  24. 24.
    NC/CTN22, NC 506: 2007 Cemento hidráulico. Método de ensayo. Determinación de la resistencia mecánica. Oficina Nacional de Normalización (NC): Impreso en Cuba (2007)Google Scholar
  25. 25.
    NC/CTN37, NC ISO 1920-3: 2010. Ensayos de Hormigón – Parte 3: Elaboración y curado de Probetas de Ensayos. Oficina Nacional de Normalización (NC): Impreso en Cuba 2010Google Scholar
  26. 26.
    NC/CTN37, NC ISO 1920-2:2010 Ensayos al hormigón. Propiedades del hormigón fresco. Oficina Nacional de Normalización (NC): Impresa en Cuba 2010Google Scholar
  27. 27.
    NC/CTN37, NC 724:2009 Ensayos del Hormigón. Resistencia del Hormigón en estado endurecido. Oficina Nacional de Normalización (NC): Impreso en Cuba (2009)Google Scholar
  28. 28.
    NC/CTN37, NC ASTM C 1231/C 1231M: 2006 Hormigón. Refrentado de probetas cilíndricas utilizando placas no adheridas. Oficina Nacional de Normalización (NC): Impreso en Cuba (2006)Google Scholar
  29. 29.
    NC/CTN37, NC 167:2002 Hormigón Fresco. Toma de muestras. Oficina Nacional de Normalización (NC): Impreso en Cuba (2002)Google Scholar
  30. 30.
    RILEM-TC116-PCD: Permeability of concrete as a criterion of its durability. Final report TC 116 PCD: concrete durability—an approach towards performance testing. Mater. Struct. 32, 163–173 (1999)Google Scholar
  31. 31.
    Torrent, R.J.: A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater. Struct. 25(150), 358–365 (1992)CrossRefGoogle Scholar
  32. 32.
    Andrade, C., Gonzales-Gasca, C., Torrent, R.J.: Suitability of torrent permeability tester to measure air-permeability of covercrete. In: Durability of concrete. (ACI International), Barcelona, pp. 301–317 (2000)Google Scholar
  33. 33.
    Torrent, R.J.: Measures the air concrete and other porous materials. Swiss standard method SIA 262/1: 2013. User Manual Version M2S.2© M.A.S. Ltd, Editor (2014)Google Scholar
  34. 34.
    SIA, Norme Suisse SIA 262/1: 2013 Construction en béton - Spécifications complémentaires, in Annexe E, “Perméabilité à l’air dans les Structures” (German + French). Société suisse des ingénieurs, pp. 30–31 (2013)Google Scholar
  35. 35.
    Habert, G., et al.: Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 40, 820–826 (2010)CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  • L. Vizcaíno
    • 1
    Email author
  • M. Antoni
    • 2
  • A. Alujas
    • 1
  • F. Martirena
    • 1
  • K. Scrivener
    • 3
  1. 1.Centro de Investigación y Desarrollo de Estructuras y MaterialesUniversidad Central de Las VillasSanta ClaraCuba
  2. 2.Innovation, Product TechnologyHolcim Technology LtdHolderbankSwitzerland
  3. 3.LMCEPFLSanta ClaraCuba

Personalised recommendations